|
|
|
@ -1,6 +1,6 @@
|
|
|
|
|
import argparse |
|
|
|
|
import torch |
|
|
|
|
|
|
|
|
|
import torch |
|
|
|
|
from chatgpt.nn import BLOOMActor, GPTActor, OPTActor |
|
|
|
|
from transformers import AutoTokenizer |
|
|
|
|
from transformers.models.gpt2.tokenization_gpt2 import GPT2Tokenizer |
|
|
|
@ -9,18 +9,17 @@ from transformers.models.gpt2.tokenization_gpt2 import GPT2Tokenizer
|
|
|
|
|
def eval(args): |
|
|
|
|
# configure model |
|
|
|
|
if args.model == 'gpt2': |
|
|
|
|
actor = GPTActor().to(torch.cuda.current_device()) |
|
|
|
|
actor = GPTActor(pretrained=args.pretrain).to(torch.cuda.current_device()) |
|
|
|
|
elif args.model == 'bloom': |
|
|
|
|
actor = BLOOMActor().to(torch.cuda.current_device()) |
|
|
|
|
actor = BLOOMActor(pretrained=args.pretrain).to(torch.cuda.current_device()) |
|
|
|
|
elif args.model == 'opt': |
|
|
|
|
actor = OPTActor().to(torch.cuda.current_device()) |
|
|
|
|
actor = OPTActor(pretrained=args.pretrain).to(torch.cuda.current_device()) |
|
|
|
|
else: |
|
|
|
|
raise ValueError(f'Unsupported model "{args.model}"') |
|
|
|
|
|
|
|
|
|
state_dict = torch.load(args.pretrain) |
|
|
|
|
state_dict = torch.load(args.model_path) |
|
|
|
|
actor.model.load_state_dict(state_dict) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# configure tokenizer |
|
|
|
|
if args.model == 'gpt2': |
|
|
|
|
tokenizer = GPT2Tokenizer.from_pretrained('gpt2') |
|
|
|
@ -49,7 +48,9 @@ def eval(args):
|
|
|
|
|
if __name__ == '__main__': |
|
|
|
|
parser = argparse.ArgumentParser() |
|
|
|
|
parser.add_argument('--model', default='gpt2', choices=['gpt2', 'bloom', 'opt']) |
|
|
|
|
# We suggest to use the pretrained model from HuggingFace, use pretrain to configure model |
|
|
|
|
parser.add_argument('--pretrain', type=str, default=None) |
|
|
|
|
parser.add_argument('--model_path', type=str, default=None) |
|
|
|
|
parser.add_argument('--input', type=str, default='Question: How are you ? Answer:') |
|
|
|
|
parser.add_argument('--max_length', type=int, default=100) |
|
|
|
|
args = parser.parse_args() |
|
|
|
|