|
|
|
@ -1,6 +1,6 @@
|
|
|
|
|
import argparse
|
|
|
|
|
import torch
|
|
|
|
|
|
|
|
|
|
import torch
|
|
|
|
|
from chatgpt.nn import BLOOMActor, GPTActor, OPTActor
|
|
|
|
|
from transformers import AutoTokenizer
|
|
|
|
|
from transformers.models.gpt2.tokenization_gpt2 import GPT2Tokenizer
|
|
|
|
@ -9,18 +9,17 @@ from transformers.models.gpt2.tokenization_gpt2 import GPT2Tokenizer
|
|
|
|
|
def eval(args):
|
|
|
|
|
# configure model
|
|
|
|
|
if args.model == 'gpt2':
|
|
|
|
|
actor = GPTActor().to(torch.cuda.current_device())
|
|
|
|
|
actor = GPTActor(pretrained=args.pretrain).to(torch.cuda.current_device())
|
|
|
|
|
elif args.model == 'bloom':
|
|
|
|
|
actor = BLOOMActor().to(torch.cuda.current_device())
|
|
|
|
|
actor = BLOOMActor(pretrained=args.pretrain).to(torch.cuda.current_device())
|
|
|
|
|
elif args.model == 'opt':
|
|
|
|
|
actor = OPTActor().to(torch.cuda.current_device())
|
|
|
|
|
actor = OPTActor(pretrained=args.pretrain).to(torch.cuda.current_device())
|
|
|
|
|
else:
|
|
|
|
|
raise ValueError(f'Unsupported model "{args.model}"')
|
|
|
|
|
|
|
|
|
|
state_dict = torch.load(args.pretrain)
|
|
|
|
|
state_dict = torch.load(args.model_path)
|
|
|
|
|
actor.model.load_state_dict(state_dict)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# configure tokenizer
|
|
|
|
|
if args.model == 'gpt2':
|
|
|
|
|
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
|
|
|
|
@ -49,7 +48,9 @@ def eval(args):
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
|
parser = argparse.ArgumentParser()
|
|
|
|
|
parser.add_argument('--model', default='gpt2', choices=['gpt2', 'bloom', 'opt'])
|
|
|
|
|
# We suggest to use the pretrained model from HuggingFace, use pretrain to configure model
|
|
|
|
|
parser.add_argument('--pretrain', type=str, default=None)
|
|
|
|
|
parser.add_argument('--model_path', type=str, default=None)
|
|
|
|
|
parser.add_argument('--input', type=str, default='Question: How are you ? Answer:')
|
|
|
|
|
parser.add_argument('--max_length', type=int, default=100)
|
|
|
|
|
args = parser.parse_args()
|
|
|
|
|