mirror of https://github.com/hpcaitech/ColossalAI
[optim] refactor fused sgd (#1134)
parent
d26902645e
commit
e4f555f29a
|
@ -28,10 +28,10 @@
|
|||
* first run : necessary for proper momentum handling & init
|
||||
* wd_after_momentum : apply weight decay _after_ momentum instead of before
|
||||
**/
|
||||
template <int N, typename T_grad, typename T_weight>
|
||||
template <typename T_grad, typename T_weight>
|
||||
struct SGDFunctor {
|
||||
__device__ __forceinline__ void operator()(
|
||||
int chunk_size, volatile int *noop_gmem, TensorListMetadata<N> &tl,
|
||||
int chunk_size, volatile int *noop_gmem, TensorListMetadata<3> &tl,
|
||||
float wd, float momentum, float dampening, float lr, bool nesterov,
|
||||
bool first_run, bool wd_after_momentum, float scale) {
|
||||
// Early exit if we don't need to do anything
|
||||
|
@ -50,12 +50,6 @@ struct SGDFunctor {
|
|||
T_weight *mom_in = (T_weight *)tl.addresses[2][tensor_loc];
|
||||
mom_in += chunk_idx * chunk_size;
|
||||
|
||||
at::Half *model_weights_out = nullptr;
|
||||
if (N == 4) {
|
||||
model_weights_out = (at::Half *)tl.addresses[3][tensor_loc];
|
||||
model_weights_out += chunk_idx * chunk_size;
|
||||
}
|
||||
|
||||
n -= chunk_idx * chunk_size;
|
||||
|
||||
// Non-divergent exit condition for the __syncthreads
|
||||
|
@ -110,10 +104,6 @@ struct SGDFunctor {
|
|||
// adjust the weight and write out
|
||||
weight_in[i] += (-lr * incoming_grads[ii]);
|
||||
|
||||
// if necessary, write out an fp16 copy of the weights
|
||||
if (N == 4)
|
||||
model_weights_out[i] = static_cast<at::Half>(weight_in[i]);
|
||||
|
||||
// also write out the new momentum
|
||||
if (momentum != 0.f) mom_in[i] = incoming_moms[ii];
|
||||
}
|
||||
|
@ -131,20 +121,14 @@ void multi_tensor_sgd_cuda(int chunk_size, at::Tensor noop_flag,
|
|||
auto grad_type = tensor_lists[0][0].scalar_type();
|
||||
auto weight_type = tensor_lists[1][0].scalar_type();
|
||||
|
||||
if (num_tensors == 4)
|
||||
for (int i = 0; i < tensor_lists[3].size(); i++)
|
||||
TORCH_CHECK(tensor_lists[3][i].scalar_type() == at::ScalarType::Half,
|
||||
"Additional output tensors should always be fp16.");
|
||||
|
||||
TORCH_CHECK(noop_flag.device() == tensor_lists[0][0].device(),
|
||||
"expected noop flag to be on the same device as tensors");
|
||||
|
||||
// We have 3 possibilities to handle here, in terms of
|
||||
// grad_type, param_type, momentum_type, requires_fp16_copy
|
||||
// 1. fp16, fp16, fp16, No
|
||||
// 2. fp32, fp32, fp32, No
|
||||
// 3. fp16, fp32, fp32, Yes
|
||||
// 4. fp32, fp32, fp32, Yes // this is the materialize_master_grads=True case
|
||||
// grad_type, param_type, momentum_type
|
||||
// 1. fp16, fp16, fp16
|
||||
// 2. fp32, fp32, fp32
|
||||
// 3. fp16, fp32, fp32
|
||||
// It's easier to hardcode these possibilities than to use
|
||||
// switches etc. to handle the cross-product of cases where
|
||||
// we don't want the majority of them.
|
||||
|
@ -153,49 +137,22 @@ void multi_tensor_sgd_cuda(int chunk_size, at::Tensor noop_flag,
|
|||
if (grad_type == at::ScalarType::Half &&
|
||||
weight_type == at::ScalarType::Half && num_tensors == 3) {
|
||||
multi_tensor_apply<3>(BLOCK_SIZE, chunk_size, noop_flag, tensor_lists,
|
||||
SGDFunctor<3, at::Half, at::Half>(), wd, momentum,
|
||||
SGDFunctor<at::Half, at::Half>(), wd, momentum,
|
||||
dampening, lr, nesterov, first_run, wd_after_momentum,
|
||||
scale);
|
||||
}
|
||||
// Case 2. fp16, fp32, fp32, No
|
||||
// else if (grad_type == at::ScalarType::Half &&
|
||||
// weight_type == at::ScalarType::Float &&
|
||||
// num_tensors == 3) {
|
||||
// multi_tensor_apply<3>(
|
||||
// BLOCK_SIZE,
|
||||
// chunk_size,
|
||||
// noop_flag,
|
||||
// tensor_lists,
|
||||
// SGDFunctor<3, at::Half, float>(),
|
||||
// wd,
|
||||
// momentum,
|
||||
// dampening,
|
||||
// lr,
|
||||
// nesterov,
|
||||
// first_run,
|
||||
// wd_after_momentum);
|
||||
// }
|
||||
// Case 2. fp32, fp32, fp32, No
|
||||
// Case 2. fp32, fp32, fp32
|
||||
else if (grad_type == at::ScalarType::Float &&
|
||||
weight_type == at::ScalarType::Float && num_tensors == 3) {
|
||||
multi_tensor_apply<3>(BLOCK_SIZE, chunk_size, noop_flag, tensor_lists,
|
||||
SGDFunctor<3, float, float>(), wd, momentum,
|
||||
dampening, lr, nesterov, first_run, wd_after_momentum,
|
||||
scale);
|
||||
SGDFunctor<float, float>(), wd, momentum, dampening,
|
||||
lr, nesterov, first_run, wd_after_momentum, scale);
|
||||
}
|
||||
// Case 3. fp16, fp32, fp32, Yes
|
||||
// Case 3. fp16, fp32, fp32
|
||||
else if (grad_type == at::ScalarType::Half &&
|
||||
weight_type == at::ScalarType::Float && num_tensors == 4) {
|
||||
multi_tensor_apply<4>(BLOCK_SIZE, chunk_size, noop_flag, tensor_lists,
|
||||
SGDFunctor<4, at::Half, float>(), wd, momentum,
|
||||
dampening, lr, nesterov, first_run, wd_after_momentum,
|
||||
scale);
|
||||
}
|
||||
// Case 4. fp32, fp32, fp32, Yes
|
||||
else if (grad_type == at::ScalarType::Float &&
|
||||
weight_type == at::ScalarType::Float && num_tensors == 4) {
|
||||
multi_tensor_apply<4>(BLOCK_SIZE, chunk_size, noop_flag, tensor_lists,
|
||||
SGDFunctor<4, float, float>(), wd, momentum,
|
||||
weight_type == at::ScalarType::Float && num_tensors == 3) {
|
||||
multi_tensor_apply<3>(BLOCK_SIZE, chunk_size, noop_flag, tensor_lists,
|
||||
SGDFunctor<at::Half, float>(), wd, momentum,
|
||||
dampening, lr, nesterov, first_run, wd_after_momentum,
|
||||
scale);
|
||||
} else {
|
||||
|
|
|
@ -64,9 +64,7 @@ class FusedSGD(Optimizer):
|
|||
dampening=0,
|
||||
weight_decay=0,
|
||||
nesterov=False,
|
||||
wd_after_momentum=False,
|
||||
materialize_master_grads=True,
|
||||
set_grad_none=False):
|
||||
wd_after_momentum=False):
|
||||
if lr is not required and lr < 0.0:
|
||||
raise ValueError("Invalid learning rate: {}".format(lr))
|
||||
if momentum < 0.0:
|
||||
|
@ -80,10 +78,6 @@ class FusedSGD(Optimizer):
|
|||
super(FusedSGD, self).__init__(params, defaults)
|
||||
|
||||
self.wd_after_momentum = wd_after_momentum
|
||||
self.materialize_master_grads = materialize_master_grads
|
||||
self.most_recent_scale = 1.0
|
||||
self.scale_set_by_backward = False
|
||||
self.set_grad_none = set_grad_none
|
||||
|
||||
if multi_tensor_applier.available:
|
||||
import colossal_C
|
||||
|
@ -100,14 +94,6 @@ class FusedSGD(Optimizer):
|
|||
for group in self.param_groups:
|
||||
group.setdefault('nesterov', False)
|
||||
|
||||
def zero_grad(self):
|
||||
if self.set_grad_none:
|
||||
for group in self.param_groups:
|
||||
for p in group['params']:
|
||||
p.grad = None
|
||||
else:
|
||||
super(FusedSGD, self).zero_grad()
|
||||
|
||||
def get_momentums(self, params):
|
||||
momentums = []
|
||||
first_run = True
|
||||
|
@ -136,74 +122,27 @@ class FusedSGD(Optimizer):
|
|||
if closure is not None:
|
||||
loss = closure()
|
||||
|
||||
explicit_master_params = (hasattr(self, "_amp_stash") and hasattr(self._amp_stash, "fp32_from_fp16_groups"))
|
||||
|
||||
for gid, group in enumerate(self.param_groups):
|
||||
for group in self.param_groups:
|
||||
weight_decay = group['weight_decay']
|
||||
momentum = group['momentum']
|
||||
dampening = group['dampening']
|
||||
nesterov = group['nesterov']
|
||||
|
||||
# For each group, there are 3 possible combinations we need to consider:
|
||||
# grad_type, param_to_update_type, momentum_type, requires_fp16_model_copy
|
||||
# 1. fp16, fp16, fp16, No
|
||||
# 2. fp32, fp32, fp32, No
|
||||
# 3. fp16, fp32, fp32, Yes
|
||||
|
||||
first_runs = [True, True]
|
||||
|
||||
# I think a bit of code divergence in exchange for naming clarity is worthwhile
|
||||
if explicit_master_params:
|
||||
stash = self._amp_stash
|
||||
|
||||
fp32_params = [p for p in stash.fp32_from_fp32_groups[gid] if p.grad is not None]
|
||||
fp32_grads = [p.grad for p in stash.fp32_from_fp32_groups[gid] if p.grad is not None]
|
||||
fp32_momentums, first_runs[1] = self.get_momentums(fp32_params)
|
||||
|
||||
if self.materialize_master_grads:
|
||||
fp16_model_params = [
|
||||
p for i, p in enumerate(stash.fp16_groups[gid])
|
||||
if stash.fp32_from_fp16_groups[gid][i].grad is not None
|
||||
]
|
||||
fp32_from_fp16_grads = [p.grad for p in stash.fp32_from_fp16_groups[gid] if p.grad is not None]
|
||||
fp32_from_fp16_params = [p for p in stash.fp32_from_fp16_groups[gid] if p.grad is not None]
|
||||
fp32_from_fp16_momentums, first_runs[0] = self.get_momentums(fp32_from_fp16_params)
|
||||
|
||||
fp16_set = [
|
||||
fp32_from_fp16_grads, fp32_from_fp16_params, fp32_from_fp16_momentums, fp16_model_params
|
||||
]
|
||||
else:
|
||||
fp16_model_params = [p for p in stash.fp16_groups[gid] if p.grad is not None]
|
||||
fp16_model_grads = [p.grad for p in stash.fp16_groups[gid] if p.grad is not None]
|
||||
fp32_from_fp16_params = [
|
||||
p for i, p in enumerate(stash.fp32_from_fp16_groups[gid])
|
||||
if stash.fp16_groups[gid][i].grad is not None
|
||||
]
|
||||
fp32_from_fp16_momentums, first_runs[0] = self.get_momentums(fp32_from_fp16_params)
|
||||
|
||||
fp16_set = [fp16_model_grads, fp32_from_fp16_params, fp32_from_fp16_momentums, fp16_model_params]
|
||||
|
||||
launch_sets = [fp16_set, [fp32_grads, fp32_params, fp32_momentums]]
|
||||
else:
|
||||
fp16_params = [p for p in group['params'] if (p.dtype == torch.float16 and p.grad is not None)]
|
||||
fp16_grads = [p.grad for p in group['params'] if (p.dtype == torch.float16 and p.grad is not None)]
|
||||
fp16_momentums, first_runs[0] = self.get_momentums(fp16_params)
|
||||
|
||||
fp32_params = [p for p in group['params'] if (p.dtype == torch.float32 and p.grad is not None)]
|
||||
fp32_grads = [p.grad for p in group['params'] if (p.dtype == torch.float32 and p.grad is not None)]
|
||||
fp32_momentums, first_runs[1] = self.get_momentums(fp32_params)
|
||||
|
||||
launch_sets = [[fp16_grads, fp16_params, fp16_momentums], [fp32_grads, fp32_params, fp32_momentums]]
|
||||
|
||||
for s, (launch_set, first_run) in enumerate(zip(launch_sets, first_runs)):
|
||||
assert len(launch_set[0]) == len(launch_set[1])
|
||||
assert len(launch_set[0]) == len(launch_set[2])
|
||||
if len(launch_set[0]) > 0:
|
||||
multi_tensor_applier(self.multi_tensor_sgd, self._dummy_overflow_buf, launch_set, weight_decay,
|
||||
momentum, dampening, group['lr'], nesterov, first_run, self.wd_after_momentum,
|
||||
1.0 / self.most_recent_scale)
|
||||
|
||||
self.most_recent_scale = 1.0
|
||||
self.scale_set_by_backward = False
|
||||
# grad_type, param_to_update_type, momentum_type
|
||||
# 1. fp16, fp16, fp16
|
||||
# 2. fp32, fp32, fp32
|
||||
# 3. fp16, fp32, fp32
|
||||
g_l, p_l = [], []
|
||||
for p in group['params']:
|
||||
if p.grad is None:
|
||||
continue
|
||||
if p.grad.data.is_sparse:
|
||||
raise RuntimeError('FusedSGD does not support sparse gradients')
|
||||
g_l.append(p.grad)
|
||||
p_l.append(p)
|
||||
m_l, first_run = self.get_momentums(p_l)
|
||||
multi_tensor_applier(self.multi_tensor_sgd, self._dummy_overflow_buf, [g_l, p_l, m_l], weight_decay,
|
||||
momentum, dampening, group['lr'], nesterov, first_run, self.wd_after_momentum, 1.0)
|
||||
|
||||
return loss
|
||||
|
|
Loading…
Reference in New Issue