mirror of https://github.com/hpcaitech/ColossalAI
[Pipeline Middleware] fix data race in Pipeline Scheduler for DAG (#2087)
* add DAG test case * fix datarace by adjusting theposition of lock * polish code * fix pytest for middleware * remove test Co-authored-by: Ziyue Jiang <ziyue.jiang@gmail.com>pull/2101/head
parent
b175e6d58e
commit
e4705ba4e2
|
@ -16,7 +16,6 @@ from torch import autograd, nn, optim
|
|||
from torch._C._distributed_rpc import PyRRef
|
||||
from torch.futures import Future
|
||||
|
||||
|
||||
class Phase(Enum):
|
||||
FORWARD = 0
|
||||
BACKWARD = 1
|
||||
|
@ -136,9 +135,6 @@ class WorkerBase(ABC):
|
|||
self.criterion = criterion
|
||||
self.metric = metric
|
||||
|
||||
# middleware info
|
||||
self._is_output = False
|
||||
|
||||
# context to maintain loop
|
||||
self._initialize_context_container()
|
||||
|
||||
|
@ -190,21 +186,33 @@ class WorkerBase(ABC):
|
|||
with self.output_list_condition_lock:
|
||||
self.output_list_condition_lock.wait_for(lambda: key in self.output_list)
|
||||
output_work_item = self.output_list[key]
|
||||
self.output_list.pop(key)
|
||||
|
||||
output_work_item.refcount += 1
|
||||
refcount = output_work_item.refcount
|
||||
output = output_work_item.output
|
||||
|
||||
if output_work_item.phase != Phase.INPUT:
|
||||
# lifecycle management for DAG scheduler
|
||||
lifecycle = len(self.get_consumer_stage_ids())
|
||||
if self.is_model_output(): # an extra reference for scheduler collecting results
|
||||
lifecycle += 1
|
||||
with self.output_list_condition_lock:
|
||||
# all consumers have been satisfied, the work_item can be released
|
||||
# or put it into work list again.
|
||||
if refcount < lifecycle:
|
||||
self.output_list[key] = output_work_item
|
||||
self.output_list_condition_lock.notify_all()
|
||||
else:
|
||||
with self.output_list_condition_lock:
|
||||
self.output_list[key] = output_work_item
|
||||
self.output_list_condition_lock.notify_all()
|
||||
|
||||
if isinstance(output, Future):
|
||||
output = output.wait()
|
||||
|
||||
# output_work_item.refcount += 1
|
||||
|
||||
# TODO(jiangziyue) redesign lifecycle management for DAG scheduler
|
||||
# all consumers have been satisfied, the work_item can be released
|
||||
with self.output_list_condition_lock:
|
||||
if output_work_item.refcount >= len(self.consumer_stage_ids):
|
||||
self.output_list.pop(key)
|
||||
return output
|
||||
|
||||
|
||||
def get_parameters(self) -> List[torch.Tensor]:
|
||||
return [p for p in self.module_partition.parameters()]
|
||||
|
||||
|
@ -246,8 +254,6 @@ class WorkerBase(ABC):
|
|||
raise TypeError(f"Input batch can be only dict, list, tuple or tensor, but receive {type(microbatch)}")
|
||||
|
||||
# just for first pp_rank
|
||||
# TODO(jiangziyue) Consider whether this function should be protected by Lock in DAG env.
|
||||
# TODO(jiangziyue) Define a Class for DAG.
|
||||
def set_input(self, microbatch_id: int, microbatch: Tuple[Any], forward_only: bool):
|
||||
key = UniqueKey(microbatch_id, Phase.FORWARD)
|
||||
output = self._get_future_by_device()
|
||||
|
@ -312,8 +318,7 @@ class WorkerBase(ABC):
|
|||
self.work_list[key] = work_item
|
||||
self.work_list_condition_lock.notify_all()
|
||||
|
||||
# TODO(jiangziyue) Consider whether this function should be protected by Lock in DAG env.
|
||||
def subscribe_producer(self, microbatch_id: int, forward_only: bool):
|
||||
def _subscribe_producer(self, microbatch_id: int, forward_only: bool):
|
||||
"""
|
||||
You should call this function asynchronously
|
||||
"""
|
||||
|
@ -328,10 +333,6 @@ class WorkerBase(ABC):
|
|||
producer_worker_rref = self.pp_rank_to_worker_rref[producer_stage_id]
|
||||
subscribe_forward_futures[i] = producer_worker_rref.rpc_async().get_output_by_key(producer_output_key)
|
||||
else:
|
||||
with self.work_list_condition_lock:
|
||||
key = UniqueKey(microbatch_id, Phase.FORWARD)
|
||||
if key in self.work_list:
|
||||
return
|
||||
producer_stage_ids = self.get_producer_stage_ids()
|
||||
producer_num = len(producer_stage_ids)
|
||||
if self.need_model_input():
|
||||
|
@ -361,10 +362,18 @@ class WorkerBase(ABC):
|
|||
work_item_from_producer = WorkItem(stage_id, Phase.FORWARD, subscribe_forward_futures, {}, output,
|
||||
microbatch_id, None, self.num_microbatches, forward_only)
|
||||
|
||||
# add work_item to work_list
|
||||
with self.work_list_condition_lock:
|
||||
return work_item_from_producer
|
||||
|
||||
# TODO(jiangziyue) Profile the side effect of the lock for lifecycle protection and consider a better one.
|
||||
def subscribe_producer(self, microbatch_id: int, forward_only: bool):
|
||||
key = UniqueKey(microbatch_id, Phase.FORWARD)
|
||||
with self.work_list_condition_lock:
|
||||
if key not in self.work_list:
|
||||
# On current PP middleware design for DAG, get_output_by_key used by _subscribe_producer
|
||||
# can only be executed once for every producer-consumer stage pair, which is necessary
|
||||
# to count the lifecycle of work_item. So, keeping the _subscribe_producer in the same
|
||||
# lock of work_item queue operation gurantees the consistency of lifecycle counter.
|
||||
work_item_from_producer = self._subscribe_producer(microbatch_id, forward_only)
|
||||
self.work_list[key] = work_item_from_producer
|
||||
self.work_list_condition_lock.notify_all()
|
||||
|
||||
|
@ -444,12 +453,10 @@ class WorkerBase(ABC):
|
|||
self.producer_stage_ids = self.get_producer_stage_ids()
|
||||
self.consumer_stage_ids = self.get_consumer_stage_ids()
|
||||
|
||||
# TODO(jiangziyue) Define a Class for DAG.
|
||||
def pp_rank_to_partition_id(self, pp_rank: int, topo: Topo):
|
||||
partition_ids = topo.get_mid_partition_ids()
|
||||
return partition_ids[pp_rank]
|
||||
|
||||
# TODO(jiangziyue) Define a Class for DAG.
|
||||
def partition_id_to_pp_rank(self, partition_id: int, topo: Topo):
|
||||
partition_ids = topo.get_mid_partition_ids()
|
||||
for i, id in enumerate(partition_ids):
|
||||
|
@ -552,6 +559,9 @@ class WorkerBase(ABC):
|
|||
need_input = True
|
||||
return not self.is_first_stage() and need_input
|
||||
|
||||
def is_model_output(self):
|
||||
return self.is_last_stage()
|
||||
|
||||
def _default_data_process_func(self, args_kwargs):
|
||||
if self.is_first_stage():
|
||||
args = args_kwargs[0]
|
||||
|
@ -748,7 +758,8 @@ class WorkerBase(ABC):
|
|||
|
||||
# move current work item to output_list to activate subscribe in advance
|
||||
with self.work_list_condition_lock:
|
||||
work_item = self.work_list.pop(work_item_key)
|
||||
#self.work_list_condition_lock.wait_for(lambda: work_item_key in self.work_list)
|
||||
work_item = self.work_list[work_item_key]
|
||||
|
||||
with self.output_list_condition_lock:
|
||||
# assert work_item_key not in self.output_list
|
||||
|
@ -758,6 +769,8 @@ class WorkerBase(ABC):
|
|||
consume_result = self._consume_work_item_by_phase(work_item)
|
||||
|
||||
work_item.output.set_result(consume_result)
|
||||
with self.work_list_condition_lock:
|
||||
self.work_list.pop(work_item_key)
|
||||
|
||||
# if is last step in one batch reset context and do step
|
||||
if self._is_last_step(work_item):
|
||||
|
|
|
@ -33,6 +33,21 @@ class MLP(nn.Module):
|
|||
x = layer(x)
|
||||
return x
|
||||
|
||||
class DAG_MLP(nn.Module):
|
||||
def __init__(self, dim: int, layers: int):
|
||||
super().__init__()
|
||||
self.layers = torch.nn.ModuleList()
|
||||
self.dag_layer = nn.Linear(dim, dim, bias=False)
|
||||
|
||||
for _ in range(layers):
|
||||
self.layers.append(nn.Linear(dim, dim, bias=False))
|
||||
|
||||
def forward(self, x, y):
|
||||
for layer in self.layers:
|
||||
x = layer(x)
|
||||
y = self.dag_layer(y)
|
||||
return x, y
|
||||
|
||||
class RpcTestModel(nn.Module):
|
||||
|
||||
def __init__(self, stage_id, actual_stage_num, feat_num, h) -> None:
|
||||
|
|
|
@ -1,16 +1,26 @@
|
|||
import torch
|
||||
from torch import nn
|
||||
import pytest
|
||||
import os
|
||||
import torch.multiprocessing as mp
|
||||
import torch.distributed.rpc as rpc
|
||||
|
||||
from torch import nn
|
||||
from torch._C._distributed_rpc import _is_current_rpc_agent_set
|
||||
from colossalai import launch
|
||||
from colossalai.logging import disable_existing_loggers
|
||||
from colossalai.pipeline.pipeline_process_group import ppg
|
||||
from colossalai.pipeline.rpc._pipeline_schedule import OneFOneBPipelineEngine
|
||||
from colossalai.fx.passes.adding_split_node_pass import split_with_split_nodes_pass, balanced_split_pass
|
||||
from colossalai.fx import ColoTracer
|
||||
from colossalai.pipeline.middleware.adaptor import get_fx_topology
|
||||
from rpc_test_utils import rpc_run, parse_args, MLP
|
||||
from rpc_test_utils import MLP, DAG_MLP
|
||||
from functools import partial
|
||||
from colossalai.testing import parameterize, rerun_if_address_is_in_use
|
||||
|
||||
# global variable for model created
|
||||
batch_size = 16
|
||||
dim = 10
|
||||
rpc_is_initialized = _is_current_rpc_agent_set
|
||||
|
||||
def create_partition_module(pp_rank: int, stage_num: int, model, data_kwargs):
|
||||
model.eval()
|
||||
|
@ -26,40 +36,82 @@ def create_partition_module(pp_rank: int, stage_num: int, model, data_kwargs):
|
|||
setattr(submodule, '_topo', topo)
|
||||
return split_submodules[pp_rank+1]
|
||||
|
||||
def partition(data_kwargs: dict, pp_rank: int, chunk: int, stage_num: int):
|
||||
def partition(model, data_kwargs: dict, pp_rank: int, chunk: int, stage_num: int):
|
||||
torch.manual_seed(1024)
|
||||
model = MLP(dim, stage_num * 3)
|
||||
partition = create_partition_module(pp_rank, stage_num, model, data_kwargs)
|
||||
return partition
|
||||
|
||||
def run_master(args):
|
||||
def run_master(model_cls, world_size):
|
||||
torch.manual_seed(100)
|
||||
|
||||
epoch = args.epoch
|
||||
device = args.device
|
||||
stage_num = args.world_size
|
||||
chunk = args.chunk
|
||||
num_microbatches = args.num_microbatches
|
||||
use_checkpoint = args.use_checkpoint
|
||||
|
||||
input_sample = torch.randn((batch_size, dim), device=device)
|
||||
epoch = 10
|
||||
device = 'cuda'
|
||||
stage_num = world_size
|
||||
chunk = 1
|
||||
num_microbatches = 8
|
||||
use_checkpoint = 'store_true'
|
||||
|
||||
if model_cls == MLP:
|
||||
def data_gen():
|
||||
x = torch.zeros((batch_size, dim))
|
||||
kwargs = dict(x=x)
|
||||
return kwargs
|
||||
model = model_cls(dim, stage_num * 3)
|
||||
elif model_cls == DAG_MLP:
|
||||
def data_gen():
|
||||
x = torch.zeros((batch_size, dim))
|
||||
y = torch.zeros((batch_size, dim))
|
||||
kwargs = dict(x=x, y=y)
|
||||
return kwargs
|
||||
model = model_cls(dim, stage_num * 3)
|
||||
else:
|
||||
pass
|
||||
|
||||
data_kwargs = data_gen()
|
||||
engine = OneFOneBPipelineEngine(partition_fn=partial(partition, data_kwargs),
|
||||
|
||||
engine = OneFOneBPipelineEngine(partition_fn=partial(partition, model, data_kwargs),
|
||||
stage_num=stage_num,
|
||||
num_microbatches=num_microbatches,
|
||||
device=device,
|
||||
chunk=chunk,
|
||||
checkpoint=use_checkpoint)
|
||||
checkpoint=use_checkpoint,)
|
||||
|
||||
for _ in range(epoch):
|
||||
logits = engine.forward_backward({'x': input_sample}, forward_only=True)
|
||||
input_x = torch.randn((batch_size, dim), device=device)
|
||||
input_y = torch.randn((batch_size, dim), device=device)
|
||||
logits = engine.forward_backward({'x': input_x, 'y': input_y}, forward_only=True)
|
||||
|
||||
def run_worker(rank, model_cls, world_size, master_func):
|
||||
master_addr = 'localhost'
|
||||
master_port = 29020
|
||||
os.environ['MASTER_ADDR'] = master_addr
|
||||
os.environ['MASTER_PORT'] = str(master_port)
|
||||
|
||||
disable_existing_loggers()
|
||||
|
||||
launch(dict(), rank, world_size, master_addr, master_port, 'nccl', verbose=False)
|
||||
ppg.set_global_info(rank=rank,
|
||||
world_size=world_size,
|
||||
dp_degree=1,
|
||||
tp_degree=1,
|
||||
num_worker_threads=128,
|
||||
device='cuda')
|
||||
|
||||
# in rpc mode, only rank 0 is needed to be coded
|
||||
if rank == 0:
|
||||
master_func(model_cls, world_size)
|
||||
# barrier here
|
||||
if rpc_is_initialized():
|
||||
rpc.shutdown()
|
||||
|
||||
@pytest.mark.skip("skip due to CI torch version 1.11")
|
||||
@parameterize('model_cls', [MLP, DAG_MLP])
|
||||
@pytest.mark.dist
|
||||
@rerun_if_address_is_in_use()
|
||||
def test_pp_middleware_fwd(model_cls):
|
||||
world_size = 4
|
||||
master_func = run_master
|
||||
mp.spawn(run_worker, args=(model_cls, world_size, master_func), nprocs=world_size)
|
||||
|
||||
if __name__ == "__main__":
|
||||
args = parse_args()
|
||||
rpc_run(args, run_master)
|
||||
test_pp_middleware_fwd()
|
||||
|
|
Loading…
Reference in New Issue