mirror of https://github.com/hpcaitech/ColossalAI
[gemini] add arguments (#2046)
* [zero] fix testing parameters * [gemini] add arguments * add docstringspull/2050/head
parent
6a9158f1fa
commit
e37f3db40c
|
@ -1,3 +1,5 @@
|
||||||
|
from typing import Optional
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
|
|
||||||
from colossalai.gemini.chunk import init_chunk_manager
|
from colossalai.gemini.chunk import init_chunk_manager
|
||||||
|
@ -14,7 +16,9 @@ class GeminiDDP(ZeroDDP):
|
||||||
placement_policy: str = "cpu",
|
placement_policy: str = "cpu",
|
||||||
pin_memory: bool = False,
|
pin_memory: bool = False,
|
||||||
force_outputs_fp32: bool = False,
|
force_outputs_fp32: bool = False,
|
||||||
search_range_mb: int = 32) -> None:
|
search_range_mb: int = 32,
|
||||||
|
hidden_dim: Optional[int] = None,
|
||||||
|
min_chunk_size_mb: Optional[float] = None) -> None:
|
||||||
"""
|
"""
|
||||||
A torch.Module warpper using ZeRO-DP and Genimi.
|
A torch.Module warpper using ZeRO-DP and Genimi.
|
||||||
ZeRO is for parallel. Gemini is for memory management.
|
ZeRO is for parallel. Gemini is for memory management.
|
||||||
|
@ -34,7 +38,17 @@ class GeminiDDP(ZeroDDP):
|
||||||
pin_memory (bool, optional): use pin memory on CPU. Defaults to False.
|
pin_memory (bool, optional): use pin memory on CPU. Defaults to False.
|
||||||
force_outputs_fp32 (bool, optional): force outputs are fp32. Defaults to False.
|
force_outputs_fp32 (bool, optional): force outputs are fp32. Defaults to False.
|
||||||
search_range_mb (int, optional): chunk size searching range in MegaByte. Defaults to 32.
|
search_range_mb (int, optional): chunk size searching range in MegaByte. Defaults to 32.
|
||||||
|
hidden_dim (int, optional): the hidden dimension of DNN.
|
||||||
|
Users can provide this argument to speed up searching.
|
||||||
|
If users do not know this argument before training, it is ok. We will use a default value 1024.
|
||||||
|
min_chunk_size_mb (float, optional): the minimum chunk size in MegaByte.
|
||||||
|
If the aggregate size of parameters is still samller than the minimum chunk size,
|
||||||
|
all parameters will be compacted into one small chunk.
|
||||||
"""
|
"""
|
||||||
chunk_manager = init_chunk_manager(model=module, init_device=device, search_range_mb=search_range_mb)
|
chunk_manager = init_chunk_manager(model=module,
|
||||||
|
init_device=device,
|
||||||
|
hidden_dim=hidden_dim,
|
||||||
|
search_range_mb=search_range_mb,
|
||||||
|
min_chunk_size_mb=min_chunk_size_mb)
|
||||||
gemini_manager = GeminiManager(placement_policy, chunk_manager, module)
|
gemini_manager = GeminiManager(placement_policy, chunk_manager, module)
|
||||||
super().__init__(module, gemini_manager, pin_memory, force_outputs_fp32)
|
super().__init__(module, gemini_manager, pin_memory, force_outputs_fp32)
|
||||||
|
|
Loading…
Reference in New Issue