mirror of https://github.com/hpcaitech/ColossalAI
[fx] added coloproxy (#1115)
parent
6f82ac9bcb
commit
e1620ddac2
@ -0,0 +1,61 @@
|
||||
import operator
|
||||
import torch
|
||||
from torch.fx.proxy import Proxy, Attribute
|
||||
|
||||
__all__ = ['ColoProxy']
|
||||
|
||||
|
||||
class ColoProxy(Proxy):
|
||||
"""
|
||||
ColoProxy is a proxy class which uses meta tensor to handle data-dependent control flow. The original torch.fx proxy
|
||||
cannot be used to infer the condition statement, with this proxy, torch.fx can still run even with if statements.
|
||||
|
||||
Usage:
|
||||
proxy = tracer.create_proxy(...)
|
||||
proxy.meta_tensor = torch.empty(4, 2, device='meta')
|
||||
print(len(proxy)) # expect output 4
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
self.meta_tensor = None
|
||||
|
||||
@property
|
||||
def meta_tensor(self):
|
||||
return self.meta_tensor
|
||||
|
||||
@meta_tensor.setter
|
||||
def meta_tensor(self, tensor: torch.Tensor):
|
||||
assert tensor.is_meta, 'Expected to receive a meta tensor, but got a non-meta tensor'
|
||||
self.meta_tensor = tensor
|
||||
|
||||
@property
|
||||
def has_meta_tensor(self):
|
||||
return self.meta_tensor is not None
|
||||
|
||||
def _assert_has_meta(self):
|
||||
assert self.has_meta_tensor, f'Meta tensor is not set for {self.node.name}'
|
||||
|
||||
@property
|
||||
def dtype(self):
|
||||
self._assert_has_meta()
|
||||
return self.meta_tensor.dtype
|
||||
|
||||
def __len__(self):
|
||||
self._assert_has_meta()
|
||||
return len(self.meta_tensor)
|
||||
|
||||
def __bool__(self):
|
||||
self._assert_has_meta()
|
||||
return self.meta_tensor
|
||||
|
||||
def __getattr__(self, k):
|
||||
if k == "metadata":
|
||||
return self.meta_tensor
|
||||
# note: not added to the graph yet, if this is a method call
|
||||
# we peephole optimize to the method invocation
|
||||
return Attribute(self, k)
|
||||
|
||||
def __setitem__(self, indices, values):
|
||||
return self.tracer.create_proxy("call_function", operator.setitem, (self, indices, values), {})
|
Loading…
Reference in new issue