mirror of https://github.com/hpcaitech/ColossalAI
Frank Lee
2 years ago
committed by
GitHub
2 changed files with 61 additions and 0 deletions
@ -0,0 +1,61 @@ |
|||||||
|
import operator |
||||||
|
import torch |
||||||
|
from torch.fx.proxy import Proxy, Attribute |
||||||
|
|
||||||
|
__all__ = ['ColoProxy'] |
||||||
|
|
||||||
|
|
||||||
|
class ColoProxy(Proxy): |
||||||
|
""" |
||||||
|
ColoProxy is a proxy class which uses meta tensor to handle data-dependent control flow. The original torch.fx proxy |
||||||
|
cannot be used to infer the condition statement, with this proxy, torch.fx can still run even with if statements. |
||||||
|
|
||||||
|
Usage: |
||||||
|
proxy = tracer.create_proxy(...) |
||||||
|
proxy.meta_tensor = torch.empty(4, 2, device='meta') |
||||||
|
print(len(proxy)) # expect output 4 |
||||||
|
|
||||||
|
""" |
||||||
|
|
||||||
|
def __init__(self, *args, **kwargs): |
||||||
|
super().__init__(*args, **kwargs) |
||||||
|
self.meta_tensor = None |
||||||
|
|
||||||
|
@property |
||||||
|
def meta_tensor(self): |
||||||
|
return self.meta_tensor |
||||||
|
|
||||||
|
@meta_tensor.setter |
||||||
|
def meta_tensor(self, tensor: torch.Tensor): |
||||||
|
assert tensor.is_meta, 'Expected to receive a meta tensor, but got a non-meta tensor' |
||||||
|
self.meta_tensor = tensor |
||||||
|
|
||||||
|
@property |
||||||
|
def has_meta_tensor(self): |
||||||
|
return self.meta_tensor is not None |
||||||
|
|
||||||
|
def _assert_has_meta(self): |
||||||
|
assert self.has_meta_tensor, f'Meta tensor is not set for {self.node.name}' |
||||||
|
|
||||||
|
@property |
||||||
|
def dtype(self): |
||||||
|
self._assert_has_meta() |
||||||
|
return self.meta_tensor.dtype |
||||||
|
|
||||||
|
def __len__(self): |
||||||
|
self._assert_has_meta() |
||||||
|
return len(self.meta_tensor) |
||||||
|
|
||||||
|
def __bool__(self): |
||||||
|
self._assert_has_meta() |
||||||
|
return self.meta_tensor |
||||||
|
|
||||||
|
def __getattr__(self, k): |
||||||
|
if k == "metadata": |
||||||
|
return self.meta_tensor |
||||||
|
# note: not added to the graph yet, if this is a method call |
||||||
|
# we peephole optimize to the method invocation |
||||||
|
return Attribute(self, k) |
||||||
|
|
||||||
|
def __setitem__(self, indices, values): |
||||||
|
return self.tracer.create_proxy("call_function", operator.setitem, (self, indices, values), {}) |
Loading…
Reference in new issue