mirror of https://github.com/hpcaitech/ColossalAI
[examples] using args and combining two versions for PaLM (#2284)
parent
e94c79f15b
commit
df1d6dc553
|
@ -1,6 +0,0 @@
|
|||
SEQ_LENGTH = 1024
|
||||
BATCH_SIZE = 4
|
||||
NUM_EPOCHS = 4
|
||||
TPDEGREE = 2
|
||||
USE_SHARD_INIT = False
|
||||
placement = 'cpu'
|
|
@ -1 +1,11 @@
|
|||
env OMP_NUM_THREADS=12 torchrun --nproc_per_node 4 --master_port 29501 train.py --config palm_config.py
|
||||
# distplan in ["colossalai", "pytorch"]
|
||||
export DISTPAN="colossalai"
|
||||
|
||||
# The following options only valid when DISTPAN="colossalai"
|
||||
export TPDEGREE=1
|
||||
export GPUNUM=1
|
||||
export PLACEMENT='cpu'
|
||||
export USE_SHARD_INIT=False
|
||||
export BATCH_SIZE=4
|
||||
|
||||
env OMP_NUM_THREADS=12 torchrun --standalone --nproc_per_node=${GPUNUM} --master_port 29501 train_new.py --tp_degree=${TPDEGREE} --batch_size=${BATCH_SIZE} --placement ${PLACEMENT} --shardinit ${USE_SHARD_INIT} --distplan ${DISTPAN} 2>&1 | tee run.log
|
|
@ -21,19 +21,51 @@ from colossalai.utils.model.colo_init_context import ColoInitContext
|
|||
|
||||
# constants
|
||||
|
||||
NUM_BATCHES = int(20)
|
||||
BATCH_SIZE = 4
|
||||
NUM_BATCHES = int(1000)
|
||||
GRADIENT_ACCUMULATE_EVERY = 1
|
||||
LEARNING_RATE = 2e-4
|
||||
VALIDATE_EVERY = 100
|
||||
GENERATE_EVERY = 500
|
||||
GENERATE_LENGTH = 512
|
||||
SEQ_LEN = 1024
|
||||
TPDEGREE = 1
|
||||
USE_SHARD_INIT = False
|
||||
placement = 'cpu'
|
||||
|
||||
|
||||
def parse_args():
|
||||
parser = colossalai.get_default_parser()
|
||||
parser.add_argument(
|
||||
"--distplan",
|
||||
type=str,
|
||||
default='colossalai',
|
||||
help="The distributed plan [colossalai, pytorch].",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--tp_degree",
|
||||
type=int,
|
||||
default=1,
|
||||
help="Tensor Parallelism Degree. Valid when using colossalai as dist plan.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--placement",
|
||||
type=str,
|
||||
default='cpu',
|
||||
help="Placement Policy for Gemini. Valid when using colossalai as dist plan.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--shardinit",
|
||||
type=bool,
|
||||
default=False,
|
||||
help=
|
||||
"Shard the tensors when init the model to shrink peak memory size on the assigned device. Valid when using colossalai as dist plan.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--batch_size",
|
||||
type=int,
|
||||
default=8,
|
||||
help="batch size per DP group of training.",
|
||||
)
|
||||
args = parser.parse_args()
|
||||
return args
|
||||
|
||||
# helpers
|
||||
def cycle(loader):
|
||||
while True:
|
||||
|
@ -73,22 +105,11 @@ def gemini_zero_dpp(model: torch.nn.Module, pg: ProcessGroup, placememt_policy:
|
|||
return model
|
||||
|
||||
|
||||
# instantiate GPT-like decoder model
|
||||
|
||||
parser = colossalai.get_default_parser()
|
||||
args = parser.parse_args()
|
||||
args = parse_args()
|
||||
if args.distplan not in ["colossalai", "pytorch"]:
|
||||
raise TypeError(f"{args.distplan} is error")
|
||||
disable_existing_loggers()
|
||||
colossalai.launch_from_torch(config=args.config, seed=42)
|
||||
|
||||
# instantiate GPT-like decoder model
|
||||
|
||||
default_pg = ProcessGroup(tp_degree=TPDEGREE)
|
||||
default_dist_spec = ShardSpec([-1], [TPDEGREE]) if USE_SHARD_INIT else None
|
||||
ctx = ColoInitContext(device='cpu', default_dist_spec=default_dist_spec, default_pg=default_pg)
|
||||
|
||||
with ctx:
|
||||
model = PaLM(num_tokens=256, dim=512, depth=8)
|
||||
model = AutoregressiveWrapper(model, max_seq_len=SEQ_LEN)
|
||||
colossalai.launch_from_torch(config={})
|
||||
|
||||
with gzip.open("./data/enwik8.gz") as file:
|
||||
X = np.fromstring(file.read(int(95e6)), dtype=np.uint8)
|
||||
|
@ -114,34 +135,62 @@ class TextSamplerDataset(Dataset):
|
|||
|
||||
train_dataset = TextSamplerDataset(data_train, SEQ_LEN)
|
||||
val_dataset = TextSamplerDataset(data_val, SEQ_LEN)
|
||||
train_loader = cycle(DataLoader(train_dataset, batch_size=BATCH_SIZE))
|
||||
val_loader = cycle(DataLoader(val_dataset, batch_size=BATCH_SIZE))
|
||||
train_loader = cycle(DataLoader(train_dataset, batch_size=args.batch_size))
|
||||
val_loader = cycle(DataLoader(val_dataset, batch_size=args.batch_size))
|
||||
|
||||
#tensor_parallelize(model, pg)
|
||||
if args.distplan == "colossalai":
|
||||
# instantiate GPT-like decoder model
|
||||
|
||||
pg = default_pg
|
||||
model = gemini_zero_dpp(model, pg, placement)
|
||||
default_pg = ProcessGroup(tp_degree=args.tp_degree)
|
||||
default_dist_spec = ShardSpec([-1], [args.tp_degree]) if args.shardinit else None
|
||||
ctx = ColoInitContext(device='cpu', default_dist_spec=default_dist_spec, default_pg=default_pg)
|
||||
|
||||
with ctx:
|
||||
model = PaLM(num_tokens=256, dim=512, depth=8)
|
||||
model = AutoregressiveWrapper(model, max_seq_len=SEQ_LEN)
|
||||
|
||||
pg = default_pg
|
||||
#tensor_parallelize(model, pg)
|
||||
model = gemini_zero_dpp(model, pg, args.placement)
|
||||
|
||||
#optimizer
|
||||
|
||||
#optimizer = GeminiAdamOptimizer(model, lr=1e-7, initial_scale=2**5)
|
||||
optimizer = GeminiAdamOptimizer(model, lr=LEARNING_RATE, initial_scale=2**5)
|
||||
else:
|
||||
model = PaLM(num_tokens=256, dim=512, depth=8)
|
||||
model = AutoregressiveWrapper(model, max_seq_len=2048)
|
||||
model.cuda()
|
||||
optim = torch.optim.Adam(model.parameters(), lr=LEARNING_RATE)
|
||||
|
||||
#optimizer
|
||||
|
||||
optimizer = GeminiAdamOptimizer(model, lr=1e-7, initial_scale=2**5)
|
||||
|
||||
# training
|
||||
model.train()
|
||||
|
||||
for i in tqdm.tqdm(range(NUM_BATCHES), mininterval=10.0, desc="training"):
|
||||
|
||||
optimizer.zero_grad()
|
||||
if args.distplan == "colossalai":
|
||||
optimizer.zero_grad()
|
||||
|
||||
loss = model(next(train_loader))
|
||||
# loss.backward()
|
||||
optimizer.backward(loss)
|
||||
loss = model(next(train_loader))
|
||||
# loss.backward()
|
||||
optimizer.backward(loss)
|
||||
|
||||
print(f"training loss: {loss.item()}")
|
||||
torch.nn.utils.clip_grad_norm_(model.parameters(), 0.5)
|
||||
# optim.step()
|
||||
# optim.zero_grad()
|
||||
optimizer.step()
|
||||
print(f"training loss: {loss.item()}")
|
||||
torch.nn.utils.clip_grad_norm_(model.parameters(), 0.5)
|
||||
# optim.step()
|
||||
# optim.zero_grad()
|
||||
optimizer.step()
|
||||
else:
|
||||
for __ in range(GRADIENT_ACCUMULATE_EVERY):
|
||||
loss = model(next(train_loader))
|
||||
loss.backward()
|
||||
|
||||
print(f"training loss: {loss.item()}")
|
||||
torch.nn.utils.clip_grad_norm_(model.parameters(), 0.5)
|
||||
optim.step()
|
||||
optim.zero_grad()
|
||||
|
||||
# TODO
|
||||
# if i % VALIDATE_EVERY == 0:
|
||||
|
@ -158,4 +207,4 @@ for i in tqdm.tqdm(range(NUM_BATCHES), mininterval=10.0, desc="training"):
|
|||
|
||||
# sample = model.generate(inp[None, ...], GENERATE_LENGTH)
|
||||
# output_str = decode_tokens(sample[0])
|
||||
# print(output_str)
|
||||
# print(output_str)
|
Loading…
Reference in New Issue