mirror of https://github.com/hpcaitech/ColossalAI
[test] pass mixtral shardformer test
parent
61109c7843
commit
dec6e25e99
|
@ -38,6 +38,7 @@ from colossalai.tensor.d_tensor.api import is_distributed_tensor
|
||||||
from colossalai.tensor.param_op_hook import ColoParamOpHookManager
|
from colossalai.tensor.param_op_hook import ColoParamOpHookManager
|
||||||
from colossalai.zero.low_level import LowLevelZeroOptimizer
|
from colossalai.zero.low_level import LowLevelZeroOptimizer
|
||||||
from colossalai.zero.low_level.zero_hook import ZeroOpHook, wait_all_gather_handle
|
from colossalai.zero.low_level.zero_hook import ZeroOpHook, wait_all_gather_handle
|
||||||
|
from colossalai.logging import get_dist_logger
|
||||||
|
|
||||||
from .pp_plugin_base import PipelinePluginBase
|
from .pp_plugin_base import PipelinePluginBase
|
||||||
|
|
||||||
|
@ -1016,6 +1017,9 @@ class HybridParallelPlugin(PipelinePluginBase):
|
||||||
overlap_allgather: bool = False,
|
overlap_allgather: bool = False,
|
||||||
) -> None:
|
) -> None:
|
||||||
super().__init__()
|
super().__init__()
|
||||||
|
|
||||||
|
self.logger = get_dist_logger(type(self).__name__)
|
||||||
|
|
||||||
assert (
|
assert (
|
||||||
dist.get_world_size() % (tp_size * pp_size) == 0
|
dist.get_world_size() % (tp_size * pp_size) == 0
|
||||||
), f"World size {dist.get_world_size()} is not divisible by tp_size {tp_size} * pp_size {pp_size}"
|
), f"World size {dist.get_world_size()} is not divisible by tp_size {tp_size} * pp_size {pp_size}"
|
||||||
|
@ -1064,6 +1068,8 @@ class HybridParallelPlugin(PipelinePluginBase):
|
||||||
self.pp_axis, self.dp_axis, self.tp_axis, self.sp_axis = 0, 1, 2, 3
|
self.pp_axis, self.dp_axis, self.tp_axis, self.sp_axis = 0, 1, 2, 3
|
||||||
self.pg_mesh = ProcessGroupMesh(self.pp_size, self.dp_size, self.tp_size, self.sp_size)
|
self.pg_mesh = ProcessGroupMesh(self.pp_size, self.dp_size, self.tp_size, self.sp_size)
|
||||||
|
|
||||||
|
self.logger.info(f"{type(self).__name__}: {self.pp_size=} {self.dp_size=} {self.tp_size=} {self.sp_size=}")
|
||||||
|
|
||||||
self.stage_manager = None
|
self.stage_manager = None
|
||||||
self.schedule = None
|
self.schedule = None
|
||||||
self.custom_policy = custom_policy
|
self.custom_policy = custom_policy
|
||||||
|
|
|
@ -24,7 +24,6 @@ from colossalai.interface import ModelWrapper, OptimizerWrapper
|
||||||
from colossalai.tensor.moe_tensor.api import is_moe_tensor
|
from colossalai.tensor.moe_tensor.api import is_moe_tensor
|
||||||
from colossalai.zero.low_level import LowLevelZeroOptimizer
|
from colossalai.zero.low_level import LowLevelZeroOptimizer
|
||||||
|
|
||||||
|
|
||||||
class MoeHybridParallelZeroOptimizer(LowLevelZeroOptimizer):
|
class MoeHybridParallelZeroOptimizer(LowLevelZeroOptimizer):
|
||||||
def __init__(
|
def __init__(
|
||||||
self,
|
self,
|
||||||
|
@ -115,6 +114,8 @@ class MoeHybridParallelPlugin(HybridParallelPlugin):
|
||||||
self.ep_group = self.moe_pg_mesh.get_group_along_axis(self.ep_axis)
|
self.ep_group = self.moe_pg_mesh.get_group_along_axis(self.ep_axis)
|
||||||
self.moe_tp_group = self.moe_pg_mesh.get_group_along_axis(self.moe_tp_axis)
|
self.moe_tp_group = self.moe_pg_mesh.get_group_along_axis(self.moe_tp_axis)
|
||||||
|
|
||||||
|
self.logger.info(f"{type(self).__name__}: {self.ep_size=} {self.moe_dp_size=} {self.moe_tp_size=}")
|
||||||
|
|
||||||
# set ep_group after super init
|
# set ep_group after super init
|
||||||
# TODO do it in a better way
|
# TODO do it in a better way
|
||||||
self.shard_config.ep_group = self.ep_group
|
self.shard_config.ep_group = self.ep_group
|
||||||
|
@ -168,7 +169,6 @@ class MoeHybridParallelPlugin(HybridParallelPlugin):
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
assert self.dp_size > 1, "Please use Zero when data parallel size is greater than 1."
|
assert self.dp_size > 1, "Please use Zero when data parallel size is greater than 1."
|
||||||
assert self.precision != "fp32", "Please set precision to 'fp16' or 'bf16' when using ZeRO."
|
|
||||||
optimizer = MoeHybridParallelZeroOptimizer(
|
optimizer = MoeHybridParallelZeroOptimizer(
|
||||||
optimizer,
|
optimizer,
|
||||||
model,
|
model,
|
||||||
|
|
|
@ -20,13 +20,15 @@ class MixtralPolicy(Policy):
|
||||||
|
|
||||||
def preprocess(self):
|
def preprocess(self):
|
||||||
if self.shard_config.enable_tensor_parallelism:
|
if self.shard_config.enable_tensor_parallelism:
|
||||||
# Resize embedding
|
raise NotImplementedError
|
||||||
vocab_size = self.model.config.vocab_size
|
|
||||||
world_size = self.shard_config.tensor_parallel_size
|
|
||||||
|
|
||||||
if vocab_size % world_size != 0:
|
# # Resize embedding
|
||||||
new_vocab_size = vocab_size + world_size - vocab_size % world_size
|
# vocab_size = self.model.config.vocab_size
|
||||||
self.model.resize_token_embeddings(new_vocab_size)
|
# world_size = self.shard_config.tensor_parallel_size
|
||||||
|
|
||||||
|
# if vocab_size % world_size != 0:
|
||||||
|
# new_vocab_size = vocab_size + world_size - vocab_size % world_size
|
||||||
|
# self.model.resize_token_embeddings(new_vocab_size)
|
||||||
|
|
||||||
return self.model
|
return self.model
|
||||||
|
|
||||||
|
|
|
@ -37,6 +37,15 @@ def check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn,
|
||||||
stage_manager = booster.plugin.stage_manager
|
stage_manager = booster.plugin.stage_manager
|
||||||
tp_group = booster.plugin.tp_group
|
tp_group = booster.plugin.tp_group
|
||||||
|
|
||||||
|
# check last hidden state & loss
|
||||||
|
if stage_manager is None or stage_manager.is_last_stage():
|
||||||
|
if test_config["precision"] == "fp32":
|
||||||
|
atol, rtol = 1e-5, 1e-3
|
||||||
|
else:
|
||||||
|
atol, rtol = 5e-3, 5e-3
|
||||||
|
|
||||||
|
check_loss(org_loss, sharded_loss, atol=atol, rtol=rtol)
|
||||||
|
|
||||||
# unwrap model
|
# unwrap model
|
||||||
mixtral_model = unwrap_model(org_model, "MixtralModel", "model")
|
mixtral_model = unwrap_model(org_model, "MixtralModel", "model")
|
||||||
shard_mixtral_model = unwrap_model(sharded_model, "MixtralModel", "model")
|
shard_mixtral_model = unwrap_model(sharded_model, "MixtralModel", "model")
|
||||||
|
@ -81,15 +90,6 @@ def check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn,
|
||||||
org_optimizer.step()
|
org_optimizer.step()
|
||||||
sharded_optimizer.step()
|
sharded_optimizer.step()
|
||||||
|
|
||||||
# check last hidden state & loss
|
|
||||||
if stage_manager is None or stage_manager.is_last_stage():
|
|
||||||
if test_config["precision"] == "fp32":
|
|
||||||
atol, rtol = 1e-5, 1e-3
|
|
||||||
else:
|
|
||||||
atol, rtol = 5e-3, 5e-3
|
|
||||||
|
|
||||||
check_loss(org_loss, sharded_loss, atol=atol, rtol=rtol)
|
|
||||||
|
|
||||||
# check weights
|
# check weights
|
||||||
if stage_manager is None or stage_manager.is_first_stage():
|
if stage_manager is None or stage_manager.is_first_stage():
|
||||||
if test_config["precision"] == "fp32":
|
if test_config["precision"] == "fp32":
|
||||||
|
@ -121,16 +121,32 @@ def check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn,
|
||||||
"zero_stage": 0,
|
"zero_stage": 0,
|
||||||
"precision": "fp32",
|
"precision": "fp32",
|
||||||
}, # pp + ep
|
}, # pp + ep
|
||||||
# {"tp_size": 1, "pp_size": 1, "ep_size": 1, "zero_stage": 1, "precision": "fp16"}, # full dp for moe and non-moe
|
{
|
||||||
# { # moe_dp = 2, non_moe_dp = 4
|
"tp_size": 1,
|
||||||
# "tp_size": 1,
|
"pp_size": 2,
|
||||||
# "pp_size": 1,
|
"num_microbatches": 2,
|
||||||
# "ep_size": 2,
|
"ep_size": 1,
|
||||||
# "zero_stage": 1,
|
"zero_stage": 0,
|
||||||
# "precision": "fp16",
|
"precision": "fp32",
|
||||||
# }, # moe_dp = 1, non_moe_dp = 4
|
}, # pp + ep
|
||||||
# {"tp_size": 1, "pp_size": 1, "ep_size": 4, "zero_stage": 1, "precision": "fp16"},
|
{
|
||||||
# {"tp_size": 1, "pp_size": 1, "ep_size": 1, "zero_stage": 0, "precision": "fp32"}, # full dp for moe and non-moe
|
"tp_size": 1,
|
||||||
|
"pp_size": 2,
|
||||||
|
"num_microbatches": 2,
|
||||||
|
"ep_size": 4,
|
||||||
|
"zero_stage": 0,
|
||||||
|
"precision": "fp32",
|
||||||
|
}, # pp + ep
|
||||||
|
{"tp_size": 1, "pp_size": 1, "ep_size": 1, "zero_stage": 1, "precision": "bf16"}, # full dp for moe and non-moe
|
||||||
|
{ # moe_dp = 2, non_moe_dp = 4
|
||||||
|
"tp_size": 1,
|
||||||
|
"pp_size": 1,
|
||||||
|
"ep_size": 2,
|
||||||
|
"zero_stage": 1,
|
||||||
|
"precision": "fp32",
|
||||||
|
}, # moe_dp = 1, non_moe_dp = 4
|
||||||
|
{"tp_size": 1, "pp_size": 1, "ep_size": 4, "zero_stage": 1, "precision": "fp32"}, # full dp for non-moe and full ep for moe
|
||||||
|
{"tp_size": 1, "pp_size": 1, "ep_size": 1, "zero_stage": 0, "precision": "fp32"}, # full dp for moe and non-moe
|
||||||
],
|
],
|
||||||
)
|
)
|
||||||
def run_mixtral_test(test_config):
|
def run_mixtral_test(test_config):
|
||||||
|
|
Loading…
Reference in New Issue