[Inference]Adapt repetition_penalty and no_repeat_ngram_size (#5708)

* Adapt repetition_penalty and no_repeat_ngram_size

* fix no_repeat_ngram_size_logit_process

* remove batch_updated

* fix annotation

* modified codes based on the review feedback.

* rm get_batch_token_ids
pull/5714/head
yuehuayingxueluo 2024-05-11 15:13:25 +08:00 committed by GitHub
parent 50104ab340
commit de4bf3dedf
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
5 changed files with 94 additions and 18 deletions

View File

@ -102,6 +102,13 @@ class BatchBucket:
def num_tokens_to_verify(self) -> int:
return self._num_tokens_to_verify
@property
def batch_token_ids(self) -> List[List[int]]:
out = []
for seq in self.seqs_li:
out.append(seq.input_token_id + seq.output_token_id)
return out
def set_use_spec_dec(self, num_tokens_to_verify: int = 5) -> None:
"""Set batch bucket to use speculatvie decoding.
This will notify the adjust the lengths of inputs during modeling,
@ -328,6 +335,7 @@ class BatchBucket:
seqs.append(seq)
if not self.is_compact:
self._make_compact()
return seqs, block_tables
def pop_finished(
@ -432,6 +440,7 @@ class BatchBucket:
block_tables = torch.stack(block_tables_li)
self.add_seqs(seqs, alloc_block_tables=block_tables)
unmerged_ids = other.seqs_ids
return unmerged_ids
########## The following methods are expected to be used in modeling ###########

View File

@ -99,7 +99,9 @@ class InferenceConfig:
early_stopping (Optional[bool]): Whether to stop the generation when all beam hypotheses have finished or not, defaults to False.
top_k (Optional[int]): The number of highest probability vocabulary tokens to keep for top-k-filtering, defaults to None.
top_p (Optional[float]): The cumulative probability threshold for retaining tokens with a total probability above it, defaults to None.
min_p (Optional[float]): The minimum probability to keep for top-p filtering, defaults to None.
temperature (Optional[float]): Randomness used to control randomization, defaults to 1.0.
repetition_penalty (Optional[float]): The parameter that influences the model's treatment of new tokens in relation to their appearance in the prompt and the generated text. Values greater than 1 incentivize the model to introduce new tokens, whereas values less than 1 incentivize token repetition., defaults to 1.0.
no_repeat_ngram_size (Optional[int]): If no_repeat_ngram_size > 0, the consecutive tokens of ngram size can only appear once in inference sentences.
n_spec_tokens (int): The maximum number of speculating tokens, defaults to None.
glimpse_large_kv (bool): Whether to use large KV in drafter model, defaults to False.
block_size (int): The number of blocks in a logical block, defaults to 16.
@ -136,7 +138,9 @@ class InferenceConfig:
early_stopping: Optional[bool] = False
top_k: Optional[int] = None
top_p: Optional[float] = None
min_p: Optional[float] = None
temperature: Optional[float] = 1.0
no_repeat_ngram_size: Optional[int] = 0
repetition_penalty: Optional[float] = 1.0
# speculative decoding configs
max_n_spec_tokens: int = 5
@ -213,7 +217,7 @@ class InferenceConfig:
"do_sample": self.do_sample,
"num_beams": self.beam_width,
}
for type in ["top_k", "top_p", "min_p"]:
for type in ["repetition_penalty", "no_repeat_ngram_size", "temperature", "top_k", "top_p"]:
if hasattr(self, type):
meta_config[type] = getattr(self, type)
for type in ["pad_token_id", "bos_token_id", "eos_token_id"]:

View File

@ -424,7 +424,7 @@ class InferenceEngine:
# 2. Prefill main model (Verifier) - fill past kv cache for main model
logits = model_executable(input_token_ids, output_tensor, input_meta_data, self.k_cache, self.v_cache)
next_tokens = self.request_handler.search_tokens(self.generation_config, logits)
next_tokens = self.request_handler.search_tokens(self.generation_config, logits, batch)
# append new inputs to the batch, temporarily
batch.append_batch_tokens(next_tokens)
self.request_handler.allocate_batch_spec_dec(batch, 1)
@ -472,7 +472,7 @@ class InferenceEngine:
input_token_ids, output_tensor, input_meta_data = self.prepare_input(batch)
logits = model_executable(input_token_ids, output_tensor, input_meta_data, self.k_cache, self.v_cache)
next_tokens = self.request_handler.search_tokens(self.generation_config, logits)
next_tokens = self.request_handler.search_tokens(self.generation_config, logits, batch)
# 5. Compare and process the results
diff_indexes = torch.nonzero(~(next_tokens[:-1] == next_token_ids_spec))
@ -738,7 +738,7 @@ class InferenceEngine:
logits = model_executable(input_token_ids, output_tensor, input_meta_data, self.k_cache, self.v_cache)
if self.inference_config.pad_input:
logits = logits[:, -1, :]
next_tokens = self.request_handler.search_tokens(self.generation_config, logits)
next_tokens = self.request_handler.search_tokens(self.generation_config, logits, batch)
self.request_handler.append_next_tokens(next_tokens)
finished_sequences = self.request_handler.update()

View File

@ -11,12 +11,9 @@ from colossalai.inference.kv_cache import KVCacheManager
from colossalai.inference.logit_processors import logit_processor
from colossalai.inference.sampler import *
from colossalai.inference.struct import RequestStatus, Sequence
from colossalai.logging import get_dist_logger
__all__ = ["RunningList", "RequestHandler"]
logger = get_dist_logger(__name__)
class RunningList:
"""
@ -331,15 +328,21 @@ class RequestHandler:
def total_requests_in_batch_bucket(self) -> int:
return self.prefill_bb.current_batch_size + self.running_bb.current_batch_size
def search_tokens(self, generation_config: GenerationConfig, logits):
def search_tokens(self, generation_config: GenerationConfig, logits, cur_batch: BatchBucket):
"""
Sample tokens for finished requests.
"""
# NOTE: need to decide the granularity to process logits (sequence or batch)
config_dict = generation_config.to_dict()
# process repetition_penalty, no_repeat_ngram_size
for type in ["repetition_penalty", "no_repeat_ngram_size"]:
if type in config_dict and config_dict[type] is not None:
logits = logit_processor(type, logits, config_dict[type], cur_batch)
# do logit processor
if generation_config.do_sample:
# NOTE: need to decide the granularity to process logits (sequence or batch)
config_dict = generation_config.to_dict()
# process temperature, top_k, top_p
for type in ["temperature", "top_k", "top_p"]:
if type in config_dict and config_dict[type] is not None:
logits = logit_processor(type, logits, config_dict[type])

View File

@ -1,6 +1,10 @@
# This code is adapted from huggingface transformers: https://github.com/huggingface/transformers/blob/v4.36.2/src/transformers/generation/logits_process.py
import torch
import torch.nn.functional as F
from colossalai.inference.batch_bucket import BatchBucket
_LOGIT_PROCESSOR_MAP = {}
@ -17,6 +21,66 @@ def register_logit_processor(process_type):
return register
@register_logit_processor("no_repeat_ngram_size")
def no_repeat_ngram_size_logit_process(logits, ngram_size: int, batch: BatchBucket):
"""
enforces no repetition of n-grams to avoid repetitions of word sequences.
"""
if not isinstance(ngram_size, int) or ngram_size < 0:
raise ValueError(f"'temperature={ngram_size}' should be a strictly positive integer.")
if ngram_size != 0:
batch_token_ids = batch.batch_token_ids
batch_size = len(batch_token_ids)
for batch_id in range(batch_size):
current_token_ids = batch_token_ids[batch_id]
current_len = len(current_token_ids)
if current_len + 1 < ngram_size:
continue
ngrams_dict = {}
for ngram in zip(*[current_token_ids[i:] for i in range(ngram_size)]):
prev_ngram_tuple = tuple(ngram[:-1])
ngrams_dict[prev_ngram_tuple] = ngrams_dict.get(prev_ngram_tuple, []) + [ngram[-1]]
prev_ngrams = tuple(current_token_ids[current_len + 1 - ngram_size : current_len])
banned_token = ngrams_dict.get(prev_ngrams, [])
logits[batch_id, banned_token] = -float("inf")
return logits
@register_logit_processor("repetition_penalty")
def repetition_penalty_logit_process(logits, penalty: float, batch: BatchBucket):
"""
apply the penalty to the tokens present in the prompt.
"""
if not isinstance(penalty, float) or not (penalty > 0):
raise ValueError(f"'penalty={penalty}' has to be a strictly positive float and greater than 0.")
logit_list = []
# TODO(yuehuayingxueluo) This is only a temporary implementation. Later, we will implement presence_penalties, frequency_penalties, and repetition_penalties using CUDA kernels.
if penalty != 1.0:
batch_token_ids = batch.batch_token_ids
for batch_id in range(len(batch_token_ids)):
current_logit = logits[batch_id]
current_token = torch.tensor(batch_token_ids[batch_id], dtype=torch.long, device=logits.device)
curretn_socre = torch.gather(current_logit, 0, current_token)
curretn_socre = torch.where(curretn_socre < 0, curretn_socre * penalty, curretn_socre / penalty)
logit_list.append(current_logit.scatter(0, current_token, curretn_socre))
logits = torch.stack(logit_list)
return logits
@register_logit_processor("temperature")
def temperature_logit_process(logits, temperature: float):
"""
@ -68,14 +132,13 @@ def top_p_logit_processor(logits, top_p: float):
return logits
def logit_processor(processor: str, logits, attrs):
def logit_processor(processor: str, logits, *args, **kwargs):
"""
do logit process for given logits.
Args:
processor(str): the type of logit processor
logits(torch.Tensor): input logits
attrs(dict): attrs of the logit processor
Returns:
logits after process
@ -84,8 +147,5 @@ def logit_processor(processor: str, logits, attrs):
return logits
else:
func = _LOGIT_PROCESSOR_MAP[processor]
try:
logits = func(logits, attrs)
except Exception:
return logits
logits = func(logits, *args, **kwargs)
return logits