mirror of https://github.com/hpcaitech/ColossalAI
[shardformer] support SAM (#4231)
* 1.support sam 2.add fused qkv for nn.Linear * update utils support set element in list * overtwrite SamVisionAttention foward to use DropoutForParallelInput * remove unused codepull/4445/head
parent
c59d7aca09
commit
dd2bf02679
|
@ -1,25 +1,57 @@
|
|||
import re
|
||||
|
||||
|
||||
def get_obj_list_element(obj, a):
|
||||
def get_obj_list_element(obj, attr: str):
|
||||
r"""
|
||||
Get the element of the list in the object
|
||||
|
||||
If the attr is a normal attribute, return the attribute of the object.
|
||||
If the attr is a index type, return the element of the index in the list, like `layers[0]`.
|
||||
|
||||
Args:
|
||||
obj (Object): The object to get
|
||||
attr (str): The suffix of the attribute to get
|
||||
|
||||
"""
|
||||
re_pattern = r'\[\d+\]'
|
||||
prog = re.compile(re_pattern)
|
||||
result = prog.search(a)
|
||||
result = prog.search(attr)
|
||||
if result:
|
||||
matched_brackets = result.group()
|
||||
matched_index = matched_brackets.replace('[', '')
|
||||
matched_index = matched_index.replace(']', '')
|
||||
a_ = a.replace(matched_brackets, '')
|
||||
container_obj = getattr(obj, a_)
|
||||
attr_ = attr.replace(matched_brackets, '')
|
||||
container_obj = getattr(obj, attr_)
|
||||
obj = container_obj[int(matched_index)]
|
||||
else:
|
||||
obj = getattr(obj, a)
|
||||
obj = getattr(obj, attr)
|
||||
return obj
|
||||
|
||||
|
||||
def set_obj_list_element(obj, attr: str, value):
|
||||
r"""
|
||||
Set the element to value of a list object
|
||||
|
||||
It used like set_obj_list_element(obj, 'lyaers[0]', new_layer), it will set obj.layers[0] to value
|
||||
|
||||
Args:
|
||||
obj (object): The object to set
|
||||
attr (str): the string including a list index like `layers[0]`
|
||||
"""
|
||||
re_pattern = r'\[\d+\]'
|
||||
prog = re.compile(re_pattern)
|
||||
result = prog.search(attr)
|
||||
if result:
|
||||
matched_brackets = result.group()
|
||||
matched_index = matched_brackets.replace('[', '')
|
||||
matched_index = matched_index.replace(']', '')
|
||||
attr_ = attr.replace(matched_brackets, '')
|
||||
container_obj = getattr(obj, attr_)
|
||||
container_obj[int(matched_index)] = value
|
||||
else:
|
||||
setattr(obj, attr, value)
|
||||
|
||||
|
||||
def hasattr_(obj, attr: str):
|
||||
r"""
|
||||
Check whether the object has the multi sublevel attr
|
||||
|
@ -56,7 +88,7 @@ def setattr_(obj, attr: str, value, ignore: bool = False):
|
|||
if ignore:
|
||||
return
|
||||
raise AttributeError(f"Object {obj.__class__.__name__} has no attribute {attr}")
|
||||
setattr(obj, attrs[-1], value)
|
||||
set_obj_list_element(obj, attrs[-1], value)
|
||||
|
||||
|
||||
def getattr_(obj, attr: str, ignore: bool = False):
|
||||
|
|
|
@ -3,11 +3,10 @@ from .embedding import Embedding1D, VocabParallelEmbedding1D
|
|||
from .linear import Linear1D_Col, Linear1D_Row
|
||||
from .loss import cross_entropy_1d
|
||||
from .normalization import FusedLayerNorm, FusedRMSNorm
|
||||
from .parallel_module import ParallelModule
|
||||
from .qkv_fused_linear import GPT2FusedLinearConv1D_Col, GPT2FusedLinearConv1D_Row
|
||||
from .qkv_fused_linear import FusedLinear1D_Col, GPT2FusedLinearConv1D_Col, GPT2FusedLinearConv1D_Row
|
||||
|
||||
__all__ = [
|
||||
"Embedding1D", "VocabParallelEmbedding1D", "Linear1D_Col", "Linear1D_Row", 'GPT2FusedLinearConv1D_Col',
|
||||
'GPT2FusedLinearConv1D_Row', 'DropoutForParallelInput', 'DropoutForReplicatedInput', "cross_entropy_1d",
|
||||
'FusedLayerNorm', 'FusedRMSNorm', 'ParallelModule'
|
||||
'FusedLayerNorm', 'FusedRMSNorm', 'FusedLinear1D_Col'
|
||||
]
|
||||
|
|
|
@ -25,6 +25,7 @@ from colossalai.tensor.d_tensor.api import (
|
|||
|
||||
from ._operation import (
|
||||
gather_forward_split_backward,
|
||||
linear_with_async_comm,
|
||||
matmul_with_async_comm,
|
||||
reduce_backward,
|
||||
reduce_forward,
|
||||
|
@ -33,7 +34,7 @@ from ._operation import (
|
|||
from .parallel_module import ParallelModule
|
||||
from .utils import create_randomizer_with_offset
|
||||
|
||||
__all__ = ['FusedLinear1D_Col', 'FusedLinear1D_Row']
|
||||
__all__ = ['FusedLinear1D_Col', 'FusedLinear1D_Row', 'GPT2FusedLinearConv1D_Col', 'GPT2FusedLinearConv1D_Row']
|
||||
|
||||
# ====================================
|
||||
# For GPT Only
|
||||
|
@ -490,3 +491,175 @@ class GPT2FusedLinearConv1D_Row(ParallelModule):
|
|||
return output
|
||||
else:
|
||||
return output, self.bias
|
||||
|
||||
|
||||
# ====================================
|
||||
# For Fused torch.nn.Linear
|
||||
# ====================================
|
||||
|
||||
|
||||
class FusedLinear1D_Col(ParallelModule):
|
||||
r"""Fused Linear layer with column parallelism.
|
||||
|
||||
The linear layer is defined as :math:`Y = XA + b`. A is parallelized along
|
||||
its second dimension as :math:`A = [A_1, ..., A_p]`. This layer is used to fit `torch.nn.Linear` layer (Fused QKV) in normal torch layer of huggingface, like SAM.
|
||||
|
||||
Args:
|
||||
in_features (int): size of each input sample.
|
||||
out_features (int): size of each output sample.
|
||||
bias (bool, optional): If set to ``False``, the layer will not learn an additive bias, defaults to ``True``.
|
||||
dtype (`torch.dtype`): The dtype of parameters, defaults to None.
|
||||
device (`torch.device`): The device of parameters, defaults to None.
|
||||
n_fused (int): The number items fused, defaults to 3 (QKV).
|
||||
process_group (`torch.distributed.ProcessGroup`): The process group to be used for weight sharding and communication, defaults to None.
|
||||
gather_output (bool, optional): If true, call all-gather on output and make Y available
|
||||
to all GPUs, otherwise, every GPU will have its output
|
||||
which is :math:`Y_i = XA_i`, defaults to False
|
||||
skip_bias_add (bool): If set to ``True``, it will skip bias add for linear layer,
|
||||
which is preserved for kernel fusion, defaults to False
|
||||
weight_initializer (`typing.Callable`):
|
||||
The initializer of weight, defaults to kaiming uniform initializer.
|
||||
bias_initializer (`typing.Callable`):
|
||||
The initializer of bias, defaults to xavier uniform initializer.
|
||||
|
||||
More details about ``initializer`` please refer to
|
||||
`init <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/nn/init.py>`_.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
in_features: int,
|
||||
out_features: int,
|
||||
bias: bool = True,
|
||||
dtype: torch.dtype = None,
|
||||
device: torch.device = None,
|
||||
process_group: ProcessGroup = None,
|
||||
async_communication: bool = False,
|
||||
gather_output: bool = False,
|
||||
skip_bias_add: bool = False,
|
||||
n_fused: int = 3,
|
||||
weight_initializer: Callable = init.kaiming_uniform_(a=math.sqrt(5)),
|
||||
bias_initializer: Callable = init.xavier_uniform_(a=1, scale=1)):
|
||||
super().__init__()
|
||||
|
||||
# Keep input parameters
|
||||
self.in_features = in_features
|
||||
self.out_features = out_features
|
||||
self.gather_output = gather_output
|
||||
self.skip_bias_add = skip_bias_add
|
||||
self.device = device
|
||||
self.n_fused = n_fused
|
||||
self.process_group = process_group
|
||||
self.async_communication = async_communication
|
||||
|
||||
if skip_bias_add and not bias:
|
||||
raise ValueError('cannot skip bias addition if bias is None')
|
||||
|
||||
# Parameters.
|
||||
# Initialize weight.
|
||||
factory_kwargs = {'device': device, 'dtype': dtype}
|
||||
weight = torch.empty(self.out_features, self.in_features, **factory_kwargs)
|
||||
|
||||
def shard_fn(tensor):
|
||||
return split_fused_qkv_in_gpt2_style(tensor, self.n_fused, self.process_group, False)
|
||||
|
||||
def gather_fn(tensor):
|
||||
return gather_fused_qkv_in_gpt2_style(tensor, 3, self.process_group, False)
|
||||
|
||||
with torch.no_grad():
|
||||
sharded_weight = distribute_tensor_with_customization(weight, shard_fn, gather_fn)
|
||||
self.weight = customized_distributed_tensor_to_param(sharded_weight)
|
||||
|
||||
if bias:
|
||||
bias = torch.empty(self.out_features, **factory_kwargs)
|
||||
|
||||
with torch.no_grad():
|
||||
sharded_bias = distribute_tensor_with_customization(bias, shard_fn, gather_fn)
|
||||
self.bias = customized_distributed_tensor_to_param(sharded_bias)
|
||||
else:
|
||||
self.bias = None
|
||||
|
||||
# offset the seed with randomizer index and rank
|
||||
seed = torch.random.initial_seed()
|
||||
self.randomizer = create_randomizer_with_offset(seed, process_group=self.process_group)
|
||||
|
||||
# init weights
|
||||
self.reset_parameters(weight_initializer, bias_initializer)
|
||||
|
||||
@staticmethod
|
||||
def from_native_module(module: nn.Module, process_group: Union[ProcessGroup, List[ProcessGroup]], n_fused: int,
|
||||
*args, **kwargs) -> ParallelModule:
|
||||
r"""
|
||||
Convert a fused `torch.nn.linear` layer to a parallelized linear layer.
|
||||
|
||||
Args:
|
||||
module (`nn.Linear`): The module to be converted.
|
||||
process_group (`Union[ProcessGroup, List[ProcessGroup]]`): The process group to be used for weight sharding and communication.
|
||||
n_fused (int): The number of layers to be fused. In common, Q,K,V are fused in one weight.
|
||||
"""
|
||||
# get the attributes
|
||||
in_features = module.in_features
|
||||
out_features = module.out_features
|
||||
bias = module.bias is not None
|
||||
device = module.weight.device
|
||||
|
||||
# ensure only one process group is passed
|
||||
if isinstance(process_group, (list, tuple)):
|
||||
assert len(process_group) == 1, \
|
||||
f'Expected only one process group, got {len(process_group)}.'
|
||||
process_group = process_group[0]
|
||||
|
||||
linear_1d = FusedLinear1D_Col(in_features=in_features,
|
||||
out_features=out_features,
|
||||
bias=bias,
|
||||
device=device,
|
||||
process_group=process_group,
|
||||
*args,
|
||||
**kwargs)
|
||||
|
||||
# TODO: copy the sharded weights
|
||||
with torch.no_grad():
|
||||
sharded_weight = split_fused_qkv_in_gpt2_style(module.weight.data,
|
||||
n_fused=n_fused,
|
||||
process_group=process_group,
|
||||
is_transposed=False)
|
||||
linear_1d.weight.data.copy_(sharded_weight.data)
|
||||
|
||||
if bias:
|
||||
sharded_bias = split_fused_qkv_in_gpt2_style(module.bias.data,
|
||||
n_fused=n_fused,
|
||||
process_group=process_group,
|
||||
is_transposed=False)
|
||||
linear_1d.bias.data.copy_(sharded_bias.data)
|
||||
|
||||
return linear_1d
|
||||
|
||||
def reset_parameters(self, weight_initializer, bias_initializer) -> None:
|
||||
with self.randomizer.fork_rng(enable_cpu=True):
|
||||
fan_in, fan_out = self.in_features, self.out_features
|
||||
weight_initializer(self.weight, fan_in=fan_in, fan_out=fan_out)
|
||||
if self.bias is not None:
|
||||
bias_initializer(self.bias, fan_in=fan_in)
|
||||
|
||||
def forward(self, input_: Tensor) -> Tuple[Tensor, Tensor]:
|
||||
assert input_.shape[-1] == self.weight.shape[-1], \
|
||||
'Invalid shapes in Linear1D_Col forward: input={}, weight={}. Expected last dim of input {}.'.format(
|
||||
input_.shape, self.weight.shape, self.weight.shape[-1])
|
||||
# Set up backprop all-reduce.
|
||||
# input_parallel = reduce_backward(input_, self.process_group)
|
||||
input_parallel = input_
|
||||
|
||||
# Matrix multiply.
|
||||
bias = self.bias if not self.skip_bias_add else None
|
||||
|
||||
output_parallel = linear_with_async_comm(input_parallel, self.weight, bias, self.process_group, True)
|
||||
|
||||
if self.gather_output:
|
||||
# All-gather across the partitions.
|
||||
output = gather_forward_split_backward(output_parallel, dim=-1, process_group=self.process_group)
|
||||
else:
|
||||
output = output_parallel
|
||||
|
||||
if self.skip_bias_add:
|
||||
return output, self.bias
|
||||
else:
|
||||
return output
|
||||
|
|
|
@ -0,0 +1,41 @@
|
|||
import torch
|
||||
import torch.distributed as dist
|
||||
from torch.distributed import ProcessGroup
|
||||
|
||||
|
||||
def forward_fn():
|
||||
|
||||
def forward(self, hidden_states: torch.Tensor, output_attentions=False) -> torch.Tensor:
|
||||
batch_size, height, width, _ = hidden_states.shape
|
||||
# qkv with shape (3, batch_size, nHead, height * width, channel)
|
||||
qkv = (self.qkv(hidden_states).reshape(batch_size, height * width, 3, self.num_attention_heads,
|
||||
-1).permute(2, 0, 3, 1, 4))
|
||||
# q, k, v with shape (batch_size * nHead, height * width, channel)
|
||||
query, key, value = qkv.reshape(3, batch_size * self.num_attention_heads, height * width, -1).unbind(0)
|
||||
|
||||
attn_weights = (query * self.scale) @ key.transpose(-2, -1)
|
||||
|
||||
if self.use_rel_pos:
|
||||
attn_weights = self.add_decomposed_rel_pos(attn_weights, query, self.rel_pos_h, self.rel_pos_w,
|
||||
(height, width), (height, width))
|
||||
|
||||
attn_weights = torch.nn.functional.softmax(attn_weights, dtype=torch.float32, dim=-1).to(query.dtype)
|
||||
|
||||
# replace dropout process with added DropoutForParallelInput layer
|
||||
# origin code:
|
||||
# attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
|
||||
attn_probs = self.dropout_layer(attn_weights)
|
||||
|
||||
attn_output = (attn_probs @ value).reshape(batch_size, self.num_attention_heads, height, width, -1)
|
||||
attn_output = attn_output.permute(0, 2, 3, 1, 4).reshape(batch_size, height, width, -1)
|
||||
|
||||
attn_output = self.proj(attn_output)
|
||||
|
||||
if output_attentions:
|
||||
outputs = (attn_output, attn_weights)
|
||||
else:
|
||||
outputs = (attn_output, None)
|
||||
|
||||
return outputs
|
||||
|
||||
return forward
|
|
@ -104,6 +104,10 @@ _POLICY_LIST = {
|
|||
PolicyLocation(file_name="bloom", class_name="BloomForTokenClassificationPolicy"),
|
||||
"transformers.models.bloom.modeling_bloom.BloomForQuestionAnswering":
|
||||
PolicyLocation(file_name="bloom", class_name="BloomForQuestionAnsweringPolicy"),
|
||||
|
||||
# Sam
|
||||
"transformers.models.sam.modeling_sam.SamModel":
|
||||
PolicyLocation(file_name="sam", class_name="SamModelPolicy"),
|
||||
}
|
||||
|
||||
|
||||
|
|
|
@ -0,0 +1,209 @@
|
|||
import torch.nn as nn
|
||||
|
||||
import colossalai.shardformer.layer as col_nn
|
||||
|
||||
from .._utils import getattr_, setattr_
|
||||
from ..modeling.sam import forward_fn
|
||||
from .basepolicy import ModulePolicyDescription, Policy, SubModuleReplacementDescription
|
||||
|
||||
__all__ = ['SamPolicy', 'SamModelPolicy']
|
||||
|
||||
|
||||
class SamPolicy(Policy):
|
||||
|
||||
def config_sanity_check(self):
|
||||
pass
|
||||
|
||||
def preprocess(self):
|
||||
return self.model
|
||||
|
||||
def module_policy(self):
|
||||
from transformers.models.sam.modeling_sam import (
|
||||
SamFeedForward,
|
||||
SamTwoWayAttentionBlock,
|
||||
SamTwoWayTransformer,
|
||||
SamVisionAttention,
|
||||
SamVisionLayer,
|
||||
)
|
||||
|
||||
policy = {}
|
||||
|
||||
if self.shard_config.enable_tensor_parallelism:
|
||||
policy[SamVisionLayer] = ModulePolicyDescription(attribute_replacement={
|
||||
"attn.num_attention_heads":
|
||||
self.model.config.vision_config.num_attention_heads // self.shard_config.tensor_parallel_size,
|
||||
},
|
||||
sub_module_replacement=[
|
||||
SubModuleReplacementDescription(
|
||||
suffix="attn.qkv",
|
||||
target_module=col_nn.FusedLinear1D_Col,
|
||||
kwargs={
|
||||
"n_fused": 3,
|
||||
},
|
||||
),
|
||||
SubModuleReplacementDescription(
|
||||
suffix="attn.proj",
|
||||
target_module=col_nn.Linear1D_Row,
|
||||
),
|
||||
SubModuleReplacementDescription(
|
||||
suffix="mlp.lin1",
|
||||
target_module=col_nn.Linear1D_Col,
|
||||
),
|
||||
SubModuleReplacementDescription(
|
||||
suffix="mlp.lin2",
|
||||
target_module=col_nn.Linear1D_Row,
|
||||
)
|
||||
])
|
||||
policy[SamTwoWayAttentionBlock] = ModulePolicyDescription(
|
||||
attribute_replacement={
|
||||
"self_attn.num_attention_heads":
|
||||
self.model.config.mask_decoder_config.num_attention_heads //
|
||||
self.shard_config.tensor_parallel_size,
|
||||
},
|
||||
sub_module_replacement=[
|
||||
SubModuleReplacementDescription(
|
||||
suffix="self_attn.q_proj",
|
||||
target_module=col_nn.Linear1D_Col,
|
||||
),
|
||||
SubModuleReplacementDescription(
|
||||
suffix="self_attn.k_proj",
|
||||
target_module=col_nn.Linear1D_Col,
|
||||
),
|
||||
SubModuleReplacementDescription(
|
||||
suffix="self_attn.v_proj",
|
||||
target_module=col_nn.Linear1D_Col,
|
||||
),
|
||||
SubModuleReplacementDescription(
|
||||
suffix="self_attn.out_proj",
|
||||
target_module=col_nn.Linear1D_Row,
|
||||
),
|
||||
SubModuleReplacementDescription(
|
||||
suffix="cross_attn_token_to_image.q_proj",
|
||||
target_module=col_nn.Linear1D_Col,
|
||||
),
|
||||
SubModuleReplacementDescription(
|
||||
suffix="cross_attn_token_to_image.k_proj",
|
||||
target_module=col_nn.Linear1D_Col,
|
||||
),
|
||||
SubModuleReplacementDescription(
|
||||
suffix="cross_attn_token_to_image.v_proj",
|
||||
target_module=col_nn.Linear1D_Col,
|
||||
),
|
||||
SubModuleReplacementDescription(
|
||||
suffix="cross_attn_token_to_image.out_proj",
|
||||
target_module=col_nn.Linear1D_Row,
|
||||
),
|
||||
SubModuleReplacementDescription(
|
||||
suffix="mlp.lin1",
|
||||
target_module=col_nn.Linear1D_Col,
|
||||
),
|
||||
SubModuleReplacementDescription(
|
||||
suffix="mlp.lin2",
|
||||
target_module=col_nn.Linear1D_Row,
|
||||
),
|
||||
SubModuleReplacementDescription(
|
||||
suffix="cross_attn_image_to_token.q_proj",
|
||||
target_module=col_nn.Linear1D_Col,
|
||||
),
|
||||
SubModuleReplacementDescription(
|
||||
suffix="cross_attn_image_to_token.k_proj",
|
||||
target_module=col_nn.Linear1D_Col,
|
||||
),
|
||||
SubModuleReplacementDescription(
|
||||
suffix="cross_attn_image_to_token.v_proj",
|
||||
target_module=col_nn.Linear1D_Col,
|
||||
),
|
||||
SubModuleReplacementDescription(
|
||||
suffix="cross_attn_image_to_token.out_proj",
|
||||
target_module=col_nn.Linear1D_Row,
|
||||
),
|
||||
])
|
||||
policy[SamTwoWayTransformer] = ModulePolicyDescription(attribute_replacement={
|
||||
"final_attn_token_to_image.num_attention_heads":
|
||||
self.model.config.mask_decoder_config.num_attention_heads // self.shard_config.tensor_parallel_size,
|
||||
},
|
||||
sub_module_replacement=[
|
||||
SubModuleReplacementDescription(
|
||||
suffix="final_attn_token_to_image.q_proj",
|
||||
target_module=col_nn.Linear1D_Col,
|
||||
),
|
||||
SubModuleReplacementDescription(
|
||||
suffix="final_attn_token_to_image.k_proj",
|
||||
target_module=col_nn.Linear1D_Col,
|
||||
),
|
||||
SubModuleReplacementDescription(
|
||||
suffix="final_attn_token_to_image.v_proj",
|
||||
target_module=col_nn.Linear1D_Col,
|
||||
),
|
||||
SubModuleReplacementDescription(
|
||||
suffix="final_attn_token_to_image.out_proj",
|
||||
target_module=col_nn.Linear1D_Row,
|
||||
)
|
||||
])
|
||||
|
||||
# add `DropoutForParallelInput` layer to replace the useage of `nn.functional.dropout`
|
||||
policy[SamVisionAttention] = ModulePolicyDescription(attribute_replacement={
|
||||
"dropout_layer": col_nn.DropoutForParallelInput(self.model.config.vision_config.attention_dropout)
|
||||
},
|
||||
method_replacement={"forward": forward_fn()},
|
||||
sub_module_replacement=[])
|
||||
|
||||
# optimization configuration
|
||||
if self.shard_config.enable_fused_normalization:
|
||||
# Handle SamVisionLayer
|
||||
self.append_or_create_submodule_replacement(description=[
|
||||
SubModuleReplacementDescription(
|
||||
suffix="layer_norm1",
|
||||
target_module=col_nn.FusedLayerNorm,
|
||||
),
|
||||
SubModuleReplacementDescription(
|
||||
suffix="layer_norm2",
|
||||
target_module=col_nn.FusedLayerNorm,
|
||||
)
|
||||
],
|
||||
policy=policy,
|
||||
target_key=SamVisionLayer)
|
||||
|
||||
# Handle SamTwoWayAttentionBlock
|
||||
self.append_or_create_submodule_replacement(description=[
|
||||
SubModuleReplacementDescription(
|
||||
suffix="layer_norm1",
|
||||
target_module=col_nn.FusedLayerNorm,
|
||||
),
|
||||
SubModuleReplacementDescription(
|
||||
suffix="layer_norm2",
|
||||
target_module=col_nn.FusedLayerNorm,
|
||||
),
|
||||
SubModuleReplacementDescription(
|
||||
suffix="layer_norm3",
|
||||
target_module=col_nn.FusedLayerNorm,
|
||||
),
|
||||
SubModuleReplacementDescription(
|
||||
suffix="layer_norm4",
|
||||
target_module=col_nn.FusedLayerNorm,
|
||||
)
|
||||
],
|
||||
policy=policy,
|
||||
target_key=SamTwoWayAttentionBlock)
|
||||
|
||||
# Handle SamTwoWayTransformer
|
||||
self.append_or_create_submodule_replacement(description=[
|
||||
SubModuleReplacementDescription(
|
||||
suffix="layer_norm_final_attn",
|
||||
target_module=col_nn.FusedLayerNorm,
|
||||
)
|
||||
],
|
||||
policy=policy,
|
||||
target_key=SamTwoWayTransformer)
|
||||
|
||||
return policy
|
||||
|
||||
def postprocess(self):
|
||||
return self.model
|
||||
|
||||
|
||||
# SamModel
|
||||
class SamModelPolicy(SamPolicy):
|
||||
|
||||
def __init__(self) -> None:
|
||||
super().__init__()
|
|
@ -4,5 +4,6 @@ from .bloom import *
|
|||
from .gpt import *
|
||||
from .llama import *
|
||||
from .opt import *
|
||||
from .sam import *
|
||||
from .t5 import *
|
||||
from .vit import *
|
||||
|
|
|
@ -0,0 +1,52 @@
|
|||
import torch
|
||||
import transformers
|
||||
|
||||
from ..registry import ModelAttribute, model_zoo
|
||||
|
||||
# ===============================
|
||||
# Register single-image SAM
|
||||
# ===============================
|
||||
|
||||
|
||||
# define data gen function
|
||||
def data_gen():
|
||||
# Generated from following code snippet
|
||||
#
|
||||
# from PIL import Image
|
||||
# import requests
|
||||
# from transformers import SamModel, SamProcessor
|
||||
#
|
||||
# model = SamModel.from_pretrained("facebook/sam-vit-base")
|
||||
# processor = SamProcessor.from_pretrained("facebook/sam-vit-base")
|
||||
#
|
||||
# img_url = "https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png"
|
||||
# raw_image = Image.open(requests.get(img_url, stream=True).raw).convert("RGB")
|
||||
# input_points = [[[450, 600]]] # 2D localization of a window
|
||||
# inputs = processor(raw_image, input_points=input_points, return_tensors="pt")
|
||||
|
||||
pixel_values = torch.rand(1, 3, 1024, 1024, dtype=torch.float32)
|
||||
original_sizes = torch.tensor([[1764, 2646]], dtype=torch.int64)
|
||||
reshaped_input_sizes = torch.tensor([[683, 1024]], dtype=torch.int64)
|
||||
input_points = torch.tensor([[[[174.1497, 232.3129]]]], dtype=torch.float64)
|
||||
return dict(pixel_values=pixel_values,
|
||||
original_sizes=original_sizes,
|
||||
reshaped_input_sizes=reshaped_input_sizes,
|
||||
input_points=input_points)
|
||||
|
||||
|
||||
# define output transform function
|
||||
output_transform_fn = lambda x: x
|
||||
|
||||
# define loss funciton
|
||||
loss_fn = lambda x: x.iou_scores.mean()
|
||||
|
||||
config = transformers.SamConfig()
|
||||
config.vision_config.num_hidden_layers = 2
|
||||
|
||||
# register the BERT variants
|
||||
model_zoo.register(name='transformers_sam',
|
||||
model_fn=lambda: transformers.SamModel(config),
|
||||
data_gen_fn=data_gen,
|
||||
output_transform_fn=output_transform_fn,
|
||||
loss_fn=loss_fn,
|
||||
model_attribute=ModelAttribute(has_control_flow=True))
|
|
@ -0,0 +1,120 @@
|
|||
import torch
|
||||
import torch.distributed as dist
|
||||
import torch.nn as nn
|
||||
from torch.testing import assert_close
|
||||
|
||||
import colossalai
|
||||
from colossalai.shardformer.layer import GPT2FusedLinearConv1D_Col, GPT2FusedLinearConv1D_Row
|
||||
from colossalai.shardformer.layer.qkv_fused_linear import split_fused_qkv_in_gpt2_style
|
||||
from colossalai.testing import rerun_if_address_is_in_use, spawn
|
||||
|
||||
|
||||
# This code is copied from https://github.com/huggingface/transformers
|
||||
class Conv1D(nn.Module):
|
||||
"""
|
||||
1D-convolutional layer as defined by Radford et al. for OpenAI GPT (and also used in GPT-2).
|
||||
|
||||
Basically works like a linear layer but the weights are transposed.
|
||||
|
||||
Args:
|
||||
nf (`int`): The number of output features.
|
||||
nx (`int`): The number of input features.
|
||||
"""
|
||||
|
||||
def __init__(self, nf, nx):
|
||||
super().__init__()
|
||||
self.nf = nf
|
||||
self.weight = nn.Parameter(torch.empty(nx, nf))
|
||||
self.bias = nn.Parameter(torch.zeros(nf))
|
||||
nn.init.normal_(self.weight, std=0.02)
|
||||
|
||||
def forward(self, x):
|
||||
size_out = x.size()[:-1] + (self.nf,)
|
||||
x = torch.addmm(self.bias, x.view(-1, x.size(-1)), self.weight)
|
||||
x = x.view(size_out)
|
||||
return x
|
||||
|
||||
|
||||
def rearrange(tensor: torch.Tensor, dim: int):
|
||||
tensor = tensor.clone()
|
||||
world_size = 2
|
||||
order = torch.arange(world_size * 3)
|
||||
new_order = []
|
||||
for i in range(world_size):
|
||||
new_order.append(order[i::world_size])
|
||||
new_order = torch.cat(new_order)
|
||||
|
||||
tensor_chunks = torch.chunk(tensor, world_size * 3, dim=dim)
|
||||
rearanged_tensor_chunks = [tensor_chunks[i] for i in new_order]
|
||||
rearanged_tensor = torch.cat(rearanged_tensor_chunks, dim=dim)
|
||||
return rearanged_tensor
|
||||
|
||||
|
||||
def check_gpt2_linear_conv_1d_col():
|
||||
linear = Conv1D(192, 48).cuda()
|
||||
linear_conv_col = GPT2FusedLinearConv1D_Col.from_native_module(linear,
|
||||
process_group=None,
|
||||
gather_output=True,
|
||||
n_fused=3)
|
||||
|
||||
assert linear.weight.shape == torch.Size([48, 192])
|
||||
assert linear.bias.shape == torch.Size([192])
|
||||
assert linear_conv_col.weight.shape == torch.Size([48, 96])
|
||||
assert linear_conv_col.bias.shape == torch.Size([96])
|
||||
|
||||
# ensure weights are reversibly loadable
|
||||
linear_conv_col.load_state_dict(linear.state_dict())
|
||||
linear.load_state_dict(linear_conv_col.state_dict())
|
||||
|
||||
# check computation correctness
|
||||
x = torch.rand(4, 48).cuda()
|
||||
out = linear(x)
|
||||
gather_out = linear_conv_col(x)
|
||||
assert_close(rearrange(out, 1), gather_out)
|
||||
|
||||
# check backward correctness
|
||||
out.sum().backward()
|
||||
gather_out.sum().backward()
|
||||
|
||||
target_grad = split_fused_qkv_in_gpt2_style(linear.weight.grad, 3, None, True)
|
||||
assert_close(target_grad, linear_conv_col.weight.grad)
|
||||
|
||||
|
||||
def check_gpt2_linear_conv_1d_row():
|
||||
linear = Conv1D(192, 48).cuda()
|
||||
linear_row = GPT2FusedLinearConv1D_Row.from_native_module(linear, process_group=None, parallel_input=False)
|
||||
|
||||
assert linear.weight.shape == torch.Size([48, 192])
|
||||
assert linear_row.weight.shape == torch.Size([24, 192])
|
||||
assert linear_row.bias.shape == torch.Size([192])
|
||||
|
||||
# check computation correctness
|
||||
x = torch.rand(4, 48).cuda()
|
||||
out = linear(x)
|
||||
gather_out = linear_row(x)
|
||||
assert_close(out, gather_out)
|
||||
|
||||
# check backward correctness
|
||||
out.sum().backward()
|
||||
gather_out.sum().backward()
|
||||
|
||||
rank = dist.get_rank()
|
||||
target_grad = torch.chunk(linear.weight.grad, 2, dim=0)[rank]
|
||||
assert_close(target_grad, linear_row.weight.grad)
|
||||
|
||||
|
||||
def run_dist(rank, world_size, port):
|
||||
colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||
|
||||
# test for linear conv
|
||||
check_gpt2_linear_conv_1d_col()
|
||||
check_gpt2_linear_conv_1d_row()
|
||||
|
||||
|
||||
@rerun_if_address_is_in_use()
|
||||
def test_gpt2_linearconv():
|
||||
spawn(run_dist, nprocs=2)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_gpt2_linearconv()
|
|
@ -0,0 +1,92 @@
|
|||
import pytest
|
||||
import torch
|
||||
|
||||
import colossalai
|
||||
from colossalai.logging import disable_existing_loggers
|
||||
from colossalai.tensor.d_tensor.api import is_customized_distributed_tensor, is_distributed_tensor
|
||||
from colossalai.testing import (
|
||||
assert_hf_output_close,
|
||||
clear_cache_before_run,
|
||||
parameterize,
|
||||
rerun_if_address_is_in_use,
|
||||
spawn,
|
||||
)
|
||||
from tests.kit.model_zoo import model_zoo
|
||||
from tests.test_shardformer.test_model._utils import build_model, run_forward
|
||||
|
||||
|
||||
def check_forward_backward(org_model, sharded_model, data_gen_fn, output_transform_fn, loss_fn):
|
||||
# check forward
|
||||
org_output, org_loss, shard_output, shard_loss = run_forward(org_model, sharded_model, data_gen_fn,
|
||||
output_transform_fn, loss_fn)
|
||||
assert_hf_output_close(org_output, shard_output, ignore_keys=['pred_masks'])
|
||||
|
||||
# do backward
|
||||
org_loss.backward()
|
||||
shard_loss.backward()
|
||||
|
||||
assert torch.allclose(org_loss, shard_loss,
|
||||
atol=1e-5), f"shard model loss is not equal to orgin model loss\n{org_loss}\n{shard_loss}"
|
||||
|
||||
# check grad
|
||||
|
||||
sam = org_model
|
||||
sharded_sam = sharded_model
|
||||
|
||||
# compare mask decoder grad
|
||||
|
||||
org_grad = sam.mask_decoder.transformer.layers[0].self_attn.q_proj.weight.grad
|
||||
shard_grad = sharded_sam.mask_decoder.transformer.layers[0].self_attn.q_proj.weight.grad
|
||||
shard_weight = sharded_sam.mask_decoder.transformer.layers[0].self_attn.q_proj.weight
|
||||
|
||||
if is_distributed_tensor(shard_weight) or is_customized_distributed_tensor(shard_weight):
|
||||
shard_grad_list = [torch.zeros([*shard_grad.shape]).to('cuda') for _ in range(2)]
|
||||
shard_grad = torch.distributed.all_gather(shard_grad_list, shard_grad)
|
||||
all_shard_grad = torch.cat(shard_grad_list, dim=0)
|
||||
else:
|
||||
all_shard_grad = shard_grad
|
||||
assert torch.allclose(org_grad, all_shard_grad,
|
||||
atol=1e-5), f"shard model grad is not equal to orgin model grad\n{org_grad}\n{all_shard_grad}"
|
||||
|
||||
# compare vision_encoder grad
|
||||
org_grad = sam.vision_encoder.layers[0].mlp.lin1.weight.grad
|
||||
shard_grad = sharded_sam.vision_encoder.layers[0].mlp.lin1.weight.grad
|
||||
shard_weight = sharded_sam.vision_encoder.layers[0].mlp.lin1.weight
|
||||
|
||||
if is_distributed_tensor(shard_weight) or is_customized_distributed_tensor(shard_weight):
|
||||
shard_grad_list = [torch.zeros([*shard_grad.shape]).to('cuda') for _ in range(2)]
|
||||
shard_grad = torch.distributed.all_gather(shard_grad_list, shard_grad)
|
||||
all_shard_grad = torch.cat(shard_grad_list, dim=0)
|
||||
else:
|
||||
all_shard_grad = shard_grad
|
||||
|
||||
assert torch.allclose(org_grad, all_shard_grad,
|
||||
atol=1e-5), f"shard model grad is not equal to orgin model grad\n{org_grad}\n{all_shard_grad}"
|
||||
|
||||
|
||||
@parameterize('enable_fused_normalization', [True, False])
|
||||
@parameterize('enable_tensor_parallelism', [True, False])
|
||||
def run_sam_test(enable_fused_normalization, enable_tensor_parallelism):
|
||||
sub_model_zoo = model_zoo.get_sub_registry('transformers_sam')
|
||||
for name, (model_fn, data_gen_fn, output_transform_fn, loss_fn, _) in sub_model_zoo.items():
|
||||
org_model, sharded_model = build_model(model_fn, enable_fused_normalization, enable_tensor_parallelism)
|
||||
check_forward_backward(org_model, sharded_model, data_gen_fn, output_transform_fn, loss_fn)
|
||||
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
|
||||
def check_sam(rank, world_size, port):
|
||||
disable_existing_loggers()
|
||||
colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||
run_sam_test()
|
||||
|
||||
|
||||
@pytest.mark.dist
|
||||
@rerun_if_address_is_in_use()
|
||||
@clear_cache_before_run()
|
||||
def test_sam():
|
||||
spawn(check_sam, 2)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
test_sam()
|
Loading…
Reference in New Issue