mirror of https://github.com/hpcaitech/ColossalAI
[hotfix] fix test_stateful_tensor_mgr (#762)
parent
6978980f6d
commit
dcca614eee
|
@ -1,5 +1,5 @@
|
|||
from abc import ABC, abstractmethod
|
||||
from typing import List, Optional, Dict
|
||||
from typing import List, Optional
|
||||
import torch
|
||||
from colossalai.utils import get_current_device
|
||||
from colossalai.zero.sharded_param.tensor_utils import colo_model_data_tensor_move_inline, colo_tensor_mem_usage
|
||||
|
@ -79,7 +79,7 @@ class AutoTensorPlacementPolicy(TensorPlacementPolicy):
|
|||
next_compute_idx = sorted(next_compute_idx.items(), key=lambda pair: pair[1], reverse=True)
|
||||
to_free_tensor_list = [t for (t, idx) in next_compute_idx]
|
||||
for t in to_free_tensor_list:
|
||||
if freed_cuda_model_data > to_free_cuda_model_data:
|
||||
if freed_cuda_model_data >= to_free_cuda_model_data:
|
||||
break
|
||||
freed_cuda_model_data += colo_tensor_mem_usage(t)[0]
|
||||
colo_model_data_tensor_move_inline(t, torch.device('cpu'))
|
||||
|
|
|
@ -5,7 +5,7 @@ import torch.multiprocessing as mp
|
|||
from colossalai.utils.cuda import get_current_device
|
||||
from colossalai.utils.memory_tracer import MemStatsCollector
|
||||
from colossalai.utils.memory_tracer.model_data_memtracer import GLOBAL_MODEL_DATA_TRACER
|
||||
from colossalai.utils.memory import colo_device_memory_capacity, colo_set_process_memory_fraction
|
||||
from colossalai.utils.memory import colo_set_process_memory_fraction
|
||||
from colossalai.zero.utils import StatefulTensorMgr
|
||||
from colossalai.zero.sharded_param.sharded_param import ShardedParamV2
|
||||
from colossalai.zero.sharded_param.tensorful_state import TensorState
|
||||
|
@ -21,18 +21,22 @@ class Net(torch.nn.Module):
|
|||
|
||||
def __init__(self) -> None:
|
||||
super().__init__()
|
||||
# each parameter is 512 MB
|
||||
self.p0 = Parameter(torch.empty(1024, 1024, 128))
|
||||
self.p1 = Parameter(torch.empty(1024, 1024, 128))
|
||||
self.p2 = Parameter(torch.empty(1024, 1024, 128))
|
||||
# each parameter is 128 MB
|
||||
self.p0 = Parameter(torch.empty(1024, 1024, 32))
|
||||
self.p1 = Parameter(torch.empty(1024, 1024, 32))
|
||||
self.p2 = Parameter(torch.empty(1024, 1024, 32))
|
||||
|
||||
|
||||
def limit_cuda_memory(memory_in_g: float):
|
||||
cuda_capacity = torch.cuda.get_device_properties(get_current_device()).total_memory
|
||||
fraction = (memory_in_g * 1024**3) / cuda_capacity
|
||||
colo_set_process_memory_fraction(fraction)
|
||||
|
||||
|
||||
def run_stm():
|
||||
cuda_capacity = colo_device_memory_capacity(get_current_device())
|
||||
fraction = (1.4 * 1024**3) / cuda_capacity
|
||||
# limit max memory to 1.4GB
|
||||
# which means only 2 parameters can be on CUDA
|
||||
colo_set_process_memory_fraction(fraction)
|
||||
# warmup phase use 20% CUDA memory to store params
|
||||
# only 2 params can be on CUDA
|
||||
limit_cuda_memory(1.26)
|
||||
model = Net()
|
||||
for p in model.parameters():
|
||||
p.colo_attr = ShardedParamV2(p, set_data_none=True)
|
||||
|
@ -65,6 +69,8 @@ def run_stm():
|
|||
stateful_tensor_mgr.reset()
|
||||
|
||||
# warmup done
|
||||
# only 2 params can be on CUDA
|
||||
limit_cuda_memory(0.26)
|
||||
# use OPT-like eviction strategy
|
||||
apply_adjust(model, model.p0, [model.p0, model.p1], stateful_tensor_mgr)
|
||||
mem_collector.sample_model_data()
|
||||
|
@ -112,7 +118,7 @@ def run_dist(rank, world_size, port):
|
|||
run_stm()
|
||||
|
||||
|
||||
@pytest.mark.skip
|
||||
@pytest.mark.gpu
|
||||
@rerun_on_exception(exception_type=mp.ProcessRaisedException, pattern=".*Address already in use.*")
|
||||
def test_stateful_tensor_manager(world_size=1):
|
||||
run_func = partial(run_dist, world_size=world_size, port=free_port())
|
||||
|
@ -120,4 +126,5 @@ def test_stateful_tensor_manager(world_size=1):
|
|||
|
||||
|
||||
if __name__ == '__main__':
|
||||
# this unit test can pass if available CUDA memory >= 1.5G
|
||||
test_stateful_tensor_manager()
|
||||
|
|
Loading…
Reference in New Issue