[zero] check whether gradients have inf and nan in gpu (#712)

pull/715/head
HELSON 2022-04-11 15:40:13 +08:00 committed by GitHub
parent 715b86eadd
commit dbd96fe90a
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 90 additions and 11 deletions

View File

@ -148,6 +148,9 @@ class ShardedModelV2(nn.Module):
self._cuda_margin_space = 0
self.reuse_fp16_shard = reuse_fp16_shard
# record whether gradients have inf or nan
self.overflow_counter = 0
def adjust_stateful_tensor_layout(self) -> None:
self._stateful_tensor_mgr.adjust_layout()
@ -345,6 +348,11 @@ class ShardedModelV2(nn.Module):
# FIXME(ver217): refactor the below line when impl eviction policy
def _save_grad(self, param: Parameter, grad: torch.Tensor):
# record whether we have overflow
self.overflow_counter += torch.isinf(grad).any().item()
self.overflow_counter += torch.isnan(grad).any().item()
# move gradient to cpu
if param.colo_attr.offload_grad:
colo_model_data_move_to_cpu(grad)

View File

@ -118,7 +118,7 @@ class ShardedOptimizerV2(ColossalaiOptimizer):
growth_interval=growth_interval,
hysteresis=hysteresis,
max_scale=max_scale)
self._found_overflow: Tensor = torch.FloatTensor([0]).to(torch.cuda.current_device())
self._found_overflow: Tensor = torch.IntTensor([0]).to(torch.cuda.current_device())
self._logger = get_dist_logger("ShardedOptimizerV2")
# Store fp32 param shards
@ -210,20 +210,13 @@ class ShardedOptimizerV2(ColossalaiOptimizer):
def _check_overflow(self):
# clear previous overflow record
self._found_overflow.fill_(0.0)
# check for overflow
for group in self.optim.param_groups:
for p in group['params']:
if has_inf_or_nan(p.grad):
self._found_overflow.fill_(1.0)
break
self._found_overflow.fill_(self.model.overflow_counter)
# all-reduce across dp group
dist.all_reduce(self._found_overflow, op=dist.ReduceOp.MAX, group=self.dp_process_group)
dist.all_reduce(self._found_overflow, group=self.dp_process_group)
# all-reduce over model parallel group
dist.all_reduce(self._found_overflow, op=dist.ReduceOp.MAX, group=self.mp_process_group)
dist.all_reduce(self._found_overflow, group=self.mp_process_group)
return self._found_overflow.item() > 0
@ -259,6 +252,7 @@ class ShardedOptimizerV2(ColossalaiOptimizer):
else:
# release saved gradient
p.colo_attr.saved_grad.set_null()
self.model.overflow_counter = 0 # set overflow counter to zero
def sync_grad(self):
pass

View File

@ -0,0 +1,77 @@
from functools import partial
import colossalai
from colossalai.utils.cuda import get_current_device
import pytest
import torch
import torch.multiprocessing as mp
from colossalai.nn.optimizer import HybridAdam
from colossalai.testing import parameterize, rerun_on_exception
from colossalai.utils import free_port
from colossalai.zero.init_ctx import ZeroInitContext
from colossalai.zero.shard_utils import BucketTensorShardStrategy
from colossalai.zero.sharded_model import ShardedModelV2
from colossalai.zero.sharded_optim import ShardedOptimizerV2
from colossalai.zero.sharded_optim._utils import has_inf_or_nan
from tests.components_to_test.registry import non_distributed_component_funcs
from tests.test_zero_data_parallel.test_sharded_optim_v2 import _run_step
from common import CONFIG
@parameterize("cpu_offload", [True, False])
@parameterize("shard_strategy_class", [BucketTensorShardStrategy])
@parameterize("gpu_margin_mem_ratio", [0.0, 0.7])
def _run_test_found_inf(cpu_offload, shard_strategy_class, gpu_margin_mem_ratio):
test_models = ['repeated_computed_layers']
shard_strategy = shard_strategy_class()
for model_name in test_models:
get_components_func = non_distributed_component_funcs.get_callable(model_name)
model_builder, train_dataloader, _, optimizer_class, criterion = get_components_func()
with ZeroInitContext(
target_device=torch.device(f'cpu:0') if cpu_offload else torch.device(f'cuda:{get_current_device()}'),
shard_strategy=shard_strategy,
shard_param=True):
zero_model = model_builder(checkpoint=True)
zero_model = ShardedModelV2(
zero_model,
shard_strategy,
offload_config=dict(device='cpu') if cpu_offload else None,
use_memory_tracer=gpu_margin_mem_ratio > 0.0,
reuse_fp16_shard=True,
)
sharded_optim = HybridAdam(zero_model.parameters(), lr=1e-3)
sharded_optim = ShardedOptimizerV2(zero_model,
sharded_optim,
cpu_offload=cpu_offload,
gpu_margin_mem_ratio=gpu_margin_mem_ratio)
for i, (data, label) in enumerate(train_dataloader):
if i > 1:
break
assert zero_model.overflow_counter == 0
data, label = data.cuda(), label.cuda()
_run_step(zero_model, sharded_optim, data, label, criterion, False)
for param in zero_model.parameters():
assert not has_inf_or_nan(param.colo_attr.sharded_data_tensor.payload)
def _run_dist(rank, world_size, port):
colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
_run_test_found_inf()
# use_cpuadam = True can be used with cpu_offload = False
@pytest.mark.dist
@pytest.mark.parametrize("world_size", [1, 2])
@rerun_on_exception(exception_type=mp.ProcessRaisedException, pattern=".*Address already in use.*")
def test_found_inf(world_size):
run_func = partial(_run_dist, world_size=world_size, port=free_port())
mp.spawn(run_func, nprocs=world_size)
if __name__ == '__main__':
test_found_inf(world_size=2)