mirror of https://github.com/hpcaitech/ColossalAI
jiaruifang
3 years ago
committed by
Frank Lee
6 changed files with 8 additions and 114 deletions
@ -1,3 +0,0 @@
|
||||
from .bucket_tensor_copy import BucketizedTensorCopy |
||||
|
||||
__all__ = ['BucketizedTensorCopy'] |
@ -1,61 +0,0 @@
|
||||
import torch |
||||
from colossalai.zero.sharded_param import ShardedParamV2 |
||||
from colossalai.utils import get_current_device |
||||
from typing import List |
||||
|
||||
|
||||
class BucketizedTensorCopy(object): |
||||
|
||||
def __init__( |
||||
self, |
||||
chunk_size: int, |
||||
): |
||||
r""" |
||||
torch.nn.Parameter CPU (fp32) -> ShardedParam GPU (fp16) |
||||
TODO(jiaruifang) The class is a little bit hardcoded |
||||
I will make it more general later. |
||||
""" |
||||
|
||||
self.chunk_size = chunk_size |
||||
self._offset = 0 |
||||
self._cpu_buffer = torch.empty(chunk_size, dtype=torch.float, device=torch.device("cpu:0"), pin_memory=True) |
||||
self._cuda_buffer = torch.empty(chunk_size, |
||||
dtype=torch.half, |
||||
device=torch.device(f"cuda:{get_current_device()}")) |
||||
|
||||
self._buffered_param_list: List[ShardedParamV2] = [] |
||||
self._numel_list = [] |
||||
|
||||
def copy(self, src_param: torch.nn.Parameter, target_param: ShardedParamV2): |
||||
assert isinstance(target_param, ShardedParamV2) |
||||
assert isinstance(src_param, torch.nn.Parameter) |
||||
|
||||
numel = src_param.numel() |
||||
|
||||
if self._offset + numel > self.chunk_size: |
||||
self.flush() |
||||
|
||||
assert src_param.data.device.type == 'cpu' |
||||
self._cpu_buffer.narrow(0, self._offset, numel).copy_(src_param.data.view(-1)) |
||||
|
||||
self._buffered_param_list.append(target_param) |
||||
self._numel_list.append(numel) |
||||
|
||||
self._offset += numel |
||||
|
||||
def flush(self): |
||||
""" |
||||
flush to cuda memory |
||||
""" |
||||
self._cuda_buffer.copy_(self._cpu_buffer) |
||||
flush_offset = 0 |
||||
for sparam, numel in zip(self._buffered_param_list, self._numel_list): |
||||
sparam.data.copy_payload(self._cpu_buffer.narrow(0, flush_offset, numel)) |
||||
flush_offset += numel |
||||
|
||||
self.reset() |
||||
|
||||
def reset(self): |
||||
self._buffered_param_list = [] |
||||
self._numel_list = [] |
||||
self._offset = 0 |
@ -1,39 +0,0 @@
|
||||
from colossalai.utils.commons import BucketizedTensorCopy |
||||
from colossalai.zero.sharded_param import ShardedParamV2 |
||||
from colossalai.utils import free_port |
||||
import torch |
||||
import colossalai |
||||
|
||||
|
||||
def test_bucket_copy(): |
||||
# init dist env |
||||
colossalai.launch(config={}, rank=0, world_size=1, host='localhost', port=free_port(), backend='nccl') |
||||
|
||||
copyer = BucketizedTensorCopy(20) |
||||
|
||||
shape_list = [(2, 3), (5), (8), (12)] |
||||
src_param_list = [] |
||||
tgt_param_list = [] |
||||
for shape in shape_list: |
||||
# on CPU |
||||
src_param = torch.nn.Parameter(torch.randn(shape, dtype=torch.float, device=torch.device('cpu'))) |
||||
print(src_param) |
||||
# on GPU |
||||
tgt_param = ShardedParamV2(torch.nn.Parameter(torch.ones(shape, dtype=torch.half, device=torch.device('cuda')))) |
||||
|
||||
src_param_list.append(src_param) |
||||
tgt_param_list.append(tgt_param) |
||||
|
||||
copyer.copy(src_param, tgt_param) |
||||
|
||||
copyer.flush() |
||||
|
||||
for src_param, tgt_param in zip(src_param_list, tgt_param_list): |
||||
print(tgt_param.data.payload) |
||||
diff = src_param.cpu().float() - tgt_param.data.payload.cpu().float() |
||||
assert torch.allclose(src_param.cpu().float(), tgt_param.data.payload.cpu().float(), rtol=1e-03, |
||||
atol=1e-03), f"diff {diff}" |
||||
|
||||
|
||||
if __name__ == '__main__': |
||||
test_bucket_copy() |
Loading…
Reference in new issue