[autoparallel] support linear function bias addition (#2104)

pull/2105/head^2
YuliangLiu0306 2022-12-09 10:31:36 +08:00 committed by GitHub
parent 6a71d3a0d9
commit d87baa85d9
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
5 changed files with 211 additions and 2 deletions

View File

@ -1,3 +1,4 @@
from .addbmm import Addbmm
from .addmm import Addmm
from .bias_addition_function import BiasAdditionFunc, LinearBasedBiasFunc, func_to_func_dict, method_to_func_dict
from .linear import Linear

View File

@ -106,6 +106,7 @@ class LinearBasedBiasFunc(BiasAdditionFunc):
func_to_func_dict = {
torch.addmm: F.linear,
torch.addbmm: torch.bmm,
F.linear: F.linear,
}
method_to_func_dict = {

View File

@ -0,0 +1,25 @@
import operator
import torch
import torch.nn.functional as F
from ...registry import bias_addition_function
from .bias_addition_function import LinearBasedBiasFunc
@bias_addition_function.register(F.linear)
class Linear(LinearBasedBiasFunc):
def extract_kwargs_from_origin_func(self):
assert 'bias' in self.kwargs
kwargs = {}
if 'bias' in self.kwargs:
kwargs['bias'] = self.kwargs['bias']
return kwargs
def generate(self):
non_bias_linear_func_proxy = self.create_non_bias_func_proxy(self.args[0], self.args[1])
kwargs = self.extract_kwargs_from_origin_func()
bias_addition_proxy = self.create_bias_addition_proxy(non_bias_linear_func_proxy, kwargs['bias'])
return bias_addition_proxy

View File

@ -102,8 +102,13 @@ class ColoTracer(Tracer):
handle = None
if kind == "call_function":
if bias_addition_function.has(target):
function_to_substitute = func_to_func_dict[target]
handle = bias_addition_function.get(target)(self, target, args, kwargs, function_to_substitute)
if target == torch.nn.functional.linear:
if 'bias' in kwargs and kwargs['bias'] is not None:
function_to_substitute = func_to_func_dict[target]
handle = bias_addition_function.get(target)(self, target, args, kwargs, function_to_substitute)
else:
function_to_substitute = func_to_func_dict[target]
handle = bias_addition_function.get(target)(self, target, args, kwargs, function_to_substitute)
elif bias_addition_function.has(target.__name__):
# use name for some builtin op like @ (matmul)
function_to_substitute = func_to_func_dict[target]

View File

@ -0,0 +1,177 @@
from faulthandler import disable
from functools import partial
from xml.dom import WrongDocumentErr
import pytest
import torch
import torch.multiprocessing as mp
import torch.nn as nn
import torch.nn.functional as F
from typing_extensions import Self
from colossalai.auto_parallel.tensor_shard.node_handler import LinearFunctionHandler, LinearModuleHandler
from colossalai.auto_parallel.tensor_shard.sharding_strategy import (
OperationData,
OperationDataType,
ShardingStrategy,
StrategiesVector,
)
from colossalai.device.device_mesh import DeviceMesh
from colossalai.fx import ColoGraphModule, ColoTracer
from colossalai.initialize import launch
from colossalai.logging import disable_existing_loggers
from colossalai.testing import assert_close, parameterize, rerun_if_address_is_in_use
from colossalai.testing.pytest_wrapper import run_on_environment_flag
from colossalai.testing.utils import parameterize
from colossalai.utils import free_port
from tests.test_auto_parallel.test_tensor_shard.test_node_handler.utils import numerical_test_for_node_strategy
WEIGHT_SHAPE = (32, 16)
class LinearModule(torch.nn.Module):
def __init__(self, weight_shape):
super().__init__()
self.weight = torch.nn.Parameter(torch.rand(*weight_shape))
self.bias = torch.nn.Parameter(torch.rand(weight_shape[0]))
def forward(self, x):
x = F.linear(x, self.weight, bias=self.bias)
return x
def check_linear_module_handler(rank, world_size, port):
disable_existing_loggers()
launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
model = LinearModule(weight_shape=WEIGHT_SHAPE).cuda()
physical_mesh_id = torch.arange(0, 4)
mesh_shape = (2, 2)
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True)
input = torch.rand(4, 4, 4, 16).cuda()
# the index of linear node in computation graph
node_index = 3
# strategy number of linear node
strategy_number = 24
# construct input args
input_args = [input]
# construct meta arg names
meta_arg_names = ['x']
numerical_test_for_node_strategy(model=model,
device_mesh=device_mesh,
node_index=node_index,
strategy_number=strategy_number,
input_args=input_args,
meta_arg_names=meta_arg_names,
node_type='bias_module')
tracer = ColoTracer()
# graph():
# %x : torch.Tensor [#users=1] = placeholder[target=x]
# %weight : [#users=1] = get_attr[target=weight]
# %bias : [#users=1] = get_attr[target=bias]
# %linear : [#users=1] = call_function[target=torch._C._nn.linear](args = (%x, %weight), kwargs = {})
# %add : [#users=1] = call_function[target=operator.add](args = (%linear, %bias), kwargs = {})
# return add
graph = tracer.trace(model, meta_args={"x": torch.rand(4, 4, 4, 16).to('meta')})
gm = ColoGraphModule(model, graph)
linear_mod_node = list(graph.nodes)[3]
strategies_vector = StrategiesVector(linear_mod_node)
# build handler
handler = LinearFunctionHandler(node=linear_mod_node, device_mesh=device_mesh, strategies_vector=strategies_vector)
# check operation data mapping
mapping = handler.get_operation_data_mapping()
for name, op_data in mapping.items():
op_data: OperationData
# make sure they have valid values
assert op_data.logical_shape is not None
assert op_data.data is not None
assert mapping['input'].name == "x"
assert mapping['input'].data.shape == torch.Size([4, 4, 4, 16])
assert mapping['input'].type == OperationDataType.ARG
assert mapping['input'].logical_shape == torch.Size([64, 16])
assert mapping['other'].name == "weight"
assert mapping['other'].data.shape == torch.Size([32, 16])
assert mapping['other'].type == OperationDataType.PARAM
assert mapping['other'].logical_shape == torch.Size([16, 32])
assert 'bias' not in mapping
assert mapping['output'].name == "linear"
assert mapping['output'].data.shape == torch.Size([4, 4, 4, 32])
assert mapping['output'].type == OperationDataType.OUTPUT
strategies_vector = handler.register_strategy(compute_resharding_cost=False)
strategy_name_list = [val.name for val in strategies_vector]
# SS = SR x RS
assert 'S0S1 = S0R x RS1_0' in strategy_name_list
assert 'S0S1 = S0R x RS1_1' in strategy_name_list
assert 'S0S1 = S0R x RS1_2' in strategy_name_list
assert 'S1S0 = S1R x RS0_0' in strategy_name_list
assert 'S1S0 = S1R x RS0_1' in strategy_name_list
assert 'S1S0 = S1R x RS0_2' in strategy_name_list
# SR = SS x SR
assert 'S0R = S0S1 x S1R_0' in strategy_name_list
assert 'S0R = S0S1 x S1R_1' in strategy_name_list
assert 'S0R = S0S1 x S1R_2' in strategy_name_list
assert 'S1R = S1S0 x S0R_0' in strategy_name_list
assert 'S1R = S1S0 x S0R_1' in strategy_name_list
assert 'S1R = S1S0 x S0R_2' in strategy_name_list
# RS = RS x SS
assert 'RS0 = RS1 x S1S0' in strategy_name_list
assert 'RS1 = RS0 x S0S1' in strategy_name_list
# RR = RS x SR
assert 'RR = RS0 x S0R' in strategy_name_list
assert 'RR = RS1 x S1R' in strategy_name_list
# RS= RR x RS
assert 'RS0 = RR x RS0' in strategy_name_list
assert 'RS1 = RR x RS1' in strategy_name_list
# S01R = S01R x RR
assert 'S01R = S01R x RR_0' in strategy_name_list
assert 'S01R = S01R x RR_1' in strategy_name_list
assert 'S01R = S01R x RR_2' in strategy_name_list
# RR = RS01 x S01R
assert 'RR = RS01 x S01R' in strategy_name_list
# RS01 = RR x RS01
assert 'RS01 = RR x RS01' in strategy_name_list
# RR = RR x RR
assert 'RR = RR x RR' in strategy_name_list
for strategy in strategies_vector:
strategy: ShardingStrategy
input_sharding_spec = strategy.get_sharding_spec_by_name('x')
weight_sharding_spec = strategy.get_sharding_spec_by_name('weight')
output_sharding_spec = strategy.get_sharding_spec_by_name('linear')
# make sure the sharding matches across different operation data
assert input_sharding_spec.sharding_sequence[:-1] == output_sharding_spec.sharding_sequence[:-1]
assert weight_sharding_spec.sharding_sequence[1] == input_sharding_spec.sharding_sequence[-1]
assert weight_sharding_spec.sharding_sequence[0] == output_sharding_spec.sharding_sequence[-1]
@run_on_environment_flag(name='AUTO_PARALLEL')
@pytest.mark.dist
@rerun_if_address_is_in_use()
def test_linear_handler():
world_size = 4
run_func_module = partial(check_linear_module_handler, world_size=world_size, port=free_port())
mp.spawn(run_func_module, nprocs=world_size)
if __name__ == '__main__':
test_linear_handler()