mirror of https://github.com/hpcaitech/ColossalAI
[autoparallel] support linear function bias addition (#2104)
parent
6a71d3a0d9
commit
d87baa85d9
|
@ -1,3 +1,4 @@
|
|||
from .addbmm import Addbmm
|
||||
from .addmm import Addmm
|
||||
from .bias_addition_function import BiasAdditionFunc, LinearBasedBiasFunc, func_to_func_dict, method_to_func_dict
|
||||
from .linear import Linear
|
||||
|
|
|
@ -106,6 +106,7 @@ class LinearBasedBiasFunc(BiasAdditionFunc):
|
|||
func_to_func_dict = {
|
||||
torch.addmm: F.linear,
|
||||
torch.addbmm: torch.bmm,
|
||||
F.linear: F.linear,
|
||||
}
|
||||
|
||||
method_to_func_dict = {
|
||||
|
|
|
@ -0,0 +1,25 @@
|
|||
import operator
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
|
||||
from ...registry import bias_addition_function
|
||||
from .bias_addition_function import LinearBasedBiasFunc
|
||||
|
||||
|
||||
@bias_addition_function.register(F.linear)
|
||||
class Linear(LinearBasedBiasFunc):
|
||||
|
||||
def extract_kwargs_from_origin_func(self):
|
||||
assert 'bias' in self.kwargs
|
||||
kwargs = {}
|
||||
if 'bias' in self.kwargs:
|
||||
kwargs['bias'] = self.kwargs['bias']
|
||||
return kwargs
|
||||
|
||||
def generate(self):
|
||||
non_bias_linear_func_proxy = self.create_non_bias_func_proxy(self.args[0], self.args[1])
|
||||
kwargs = self.extract_kwargs_from_origin_func()
|
||||
bias_addition_proxy = self.create_bias_addition_proxy(non_bias_linear_func_proxy, kwargs['bias'])
|
||||
|
||||
return bias_addition_proxy
|
|
@ -102,8 +102,13 @@ class ColoTracer(Tracer):
|
|||
handle = None
|
||||
if kind == "call_function":
|
||||
if bias_addition_function.has(target):
|
||||
function_to_substitute = func_to_func_dict[target]
|
||||
handle = bias_addition_function.get(target)(self, target, args, kwargs, function_to_substitute)
|
||||
if target == torch.nn.functional.linear:
|
||||
if 'bias' in kwargs and kwargs['bias'] is not None:
|
||||
function_to_substitute = func_to_func_dict[target]
|
||||
handle = bias_addition_function.get(target)(self, target, args, kwargs, function_to_substitute)
|
||||
else:
|
||||
function_to_substitute = func_to_func_dict[target]
|
||||
handle = bias_addition_function.get(target)(self, target, args, kwargs, function_to_substitute)
|
||||
elif bias_addition_function.has(target.__name__):
|
||||
# use name for some builtin op like @ (matmul)
|
||||
function_to_substitute = func_to_func_dict[target]
|
||||
|
|
|
@ -0,0 +1,177 @@
|
|||
from faulthandler import disable
|
||||
from functools import partial
|
||||
from xml.dom import WrongDocumentErr
|
||||
|
||||
import pytest
|
||||
import torch
|
||||
import torch.multiprocessing as mp
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from typing_extensions import Self
|
||||
|
||||
from colossalai.auto_parallel.tensor_shard.node_handler import LinearFunctionHandler, LinearModuleHandler
|
||||
from colossalai.auto_parallel.tensor_shard.sharding_strategy import (
|
||||
OperationData,
|
||||
OperationDataType,
|
||||
ShardingStrategy,
|
||||
StrategiesVector,
|
||||
)
|
||||
from colossalai.device.device_mesh import DeviceMesh
|
||||
from colossalai.fx import ColoGraphModule, ColoTracer
|
||||
from colossalai.initialize import launch
|
||||
from colossalai.logging import disable_existing_loggers
|
||||
from colossalai.testing import assert_close, parameterize, rerun_if_address_is_in_use
|
||||
from colossalai.testing.pytest_wrapper import run_on_environment_flag
|
||||
from colossalai.testing.utils import parameterize
|
||||
from colossalai.utils import free_port
|
||||
from tests.test_auto_parallel.test_tensor_shard.test_node_handler.utils import numerical_test_for_node_strategy
|
||||
|
||||
WEIGHT_SHAPE = (32, 16)
|
||||
|
||||
|
||||
class LinearModule(torch.nn.Module):
|
||||
|
||||
def __init__(self, weight_shape):
|
||||
super().__init__()
|
||||
self.weight = torch.nn.Parameter(torch.rand(*weight_shape))
|
||||
self.bias = torch.nn.Parameter(torch.rand(weight_shape[0]))
|
||||
|
||||
def forward(self, x):
|
||||
x = F.linear(x, self.weight, bias=self.bias)
|
||||
return x
|
||||
|
||||
|
||||
def check_linear_module_handler(rank, world_size, port):
|
||||
disable_existing_loggers()
|
||||
launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||
model = LinearModule(weight_shape=WEIGHT_SHAPE).cuda()
|
||||
|
||||
physical_mesh_id = torch.arange(0, 4)
|
||||
mesh_shape = (2, 2)
|
||||
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True)
|
||||
input = torch.rand(4, 4, 4, 16).cuda()
|
||||
# the index of linear node in computation graph
|
||||
node_index = 3
|
||||
# strategy number of linear node
|
||||
strategy_number = 24
|
||||
# construct input args
|
||||
input_args = [input]
|
||||
# construct meta arg names
|
||||
meta_arg_names = ['x']
|
||||
numerical_test_for_node_strategy(model=model,
|
||||
device_mesh=device_mesh,
|
||||
node_index=node_index,
|
||||
strategy_number=strategy_number,
|
||||
input_args=input_args,
|
||||
meta_arg_names=meta_arg_names,
|
||||
node_type='bias_module')
|
||||
|
||||
tracer = ColoTracer()
|
||||
# graph():
|
||||
# %x : torch.Tensor [#users=1] = placeholder[target=x]
|
||||
# %weight : [#users=1] = get_attr[target=weight]
|
||||
# %bias : [#users=1] = get_attr[target=bias]
|
||||
# %linear : [#users=1] = call_function[target=torch._C._nn.linear](args = (%x, %weight), kwargs = {})
|
||||
# %add : [#users=1] = call_function[target=operator.add](args = (%linear, %bias), kwargs = {})
|
||||
# return add
|
||||
graph = tracer.trace(model, meta_args={"x": torch.rand(4, 4, 4, 16).to('meta')})
|
||||
gm = ColoGraphModule(model, graph)
|
||||
|
||||
linear_mod_node = list(graph.nodes)[3]
|
||||
strategies_vector = StrategiesVector(linear_mod_node)
|
||||
|
||||
# build handler
|
||||
handler = LinearFunctionHandler(node=linear_mod_node, device_mesh=device_mesh, strategies_vector=strategies_vector)
|
||||
# check operation data mapping
|
||||
mapping = handler.get_operation_data_mapping()
|
||||
|
||||
for name, op_data in mapping.items():
|
||||
op_data: OperationData
|
||||
# make sure they have valid values
|
||||
assert op_data.logical_shape is not None
|
||||
assert op_data.data is not None
|
||||
|
||||
assert mapping['input'].name == "x"
|
||||
assert mapping['input'].data.shape == torch.Size([4, 4, 4, 16])
|
||||
assert mapping['input'].type == OperationDataType.ARG
|
||||
assert mapping['input'].logical_shape == torch.Size([64, 16])
|
||||
|
||||
assert mapping['other'].name == "weight"
|
||||
assert mapping['other'].data.shape == torch.Size([32, 16])
|
||||
assert mapping['other'].type == OperationDataType.PARAM
|
||||
assert mapping['other'].logical_shape == torch.Size([16, 32])
|
||||
|
||||
assert 'bias' not in mapping
|
||||
|
||||
assert mapping['output'].name == "linear"
|
||||
assert mapping['output'].data.shape == torch.Size([4, 4, 4, 32])
|
||||
assert mapping['output'].type == OperationDataType.OUTPUT
|
||||
|
||||
strategies_vector = handler.register_strategy(compute_resharding_cost=False)
|
||||
strategy_name_list = [val.name for val in strategies_vector]
|
||||
|
||||
# SS = SR x RS
|
||||
assert 'S0S1 = S0R x RS1_0' in strategy_name_list
|
||||
assert 'S0S1 = S0R x RS1_1' in strategy_name_list
|
||||
assert 'S0S1 = S0R x RS1_2' in strategy_name_list
|
||||
assert 'S1S0 = S1R x RS0_0' in strategy_name_list
|
||||
assert 'S1S0 = S1R x RS0_1' in strategy_name_list
|
||||
assert 'S1S0 = S1R x RS0_2' in strategy_name_list
|
||||
|
||||
# SR = SS x SR
|
||||
assert 'S0R = S0S1 x S1R_0' in strategy_name_list
|
||||
assert 'S0R = S0S1 x S1R_1' in strategy_name_list
|
||||
assert 'S0R = S0S1 x S1R_2' in strategy_name_list
|
||||
assert 'S1R = S1S0 x S0R_0' in strategy_name_list
|
||||
assert 'S1R = S1S0 x S0R_1' in strategy_name_list
|
||||
assert 'S1R = S1S0 x S0R_2' in strategy_name_list
|
||||
|
||||
# RS = RS x SS
|
||||
assert 'RS0 = RS1 x S1S0' in strategy_name_list
|
||||
assert 'RS1 = RS0 x S0S1' in strategy_name_list
|
||||
|
||||
# RR = RS x SR
|
||||
assert 'RR = RS0 x S0R' in strategy_name_list
|
||||
assert 'RR = RS1 x S1R' in strategy_name_list
|
||||
|
||||
# RS= RR x RS
|
||||
assert 'RS0 = RR x RS0' in strategy_name_list
|
||||
assert 'RS1 = RR x RS1' in strategy_name_list
|
||||
|
||||
# S01R = S01R x RR
|
||||
assert 'S01R = S01R x RR_0' in strategy_name_list
|
||||
assert 'S01R = S01R x RR_1' in strategy_name_list
|
||||
assert 'S01R = S01R x RR_2' in strategy_name_list
|
||||
|
||||
# RR = RS01 x S01R
|
||||
assert 'RR = RS01 x S01R' in strategy_name_list
|
||||
|
||||
# RS01 = RR x RS01
|
||||
assert 'RS01 = RR x RS01' in strategy_name_list
|
||||
|
||||
# RR = RR x RR
|
||||
assert 'RR = RR x RR' in strategy_name_list
|
||||
|
||||
for strategy in strategies_vector:
|
||||
strategy: ShardingStrategy
|
||||
input_sharding_spec = strategy.get_sharding_spec_by_name('x')
|
||||
weight_sharding_spec = strategy.get_sharding_spec_by_name('weight')
|
||||
output_sharding_spec = strategy.get_sharding_spec_by_name('linear')
|
||||
|
||||
# make sure the sharding matches across different operation data
|
||||
assert input_sharding_spec.sharding_sequence[:-1] == output_sharding_spec.sharding_sequence[:-1]
|
||||
assert weight_sharding_spec.sharding_sequence[1] == input_sharding_spec.sharding_sequence[-1]
|
||||
assert weight_sharding_spec.sharding_sequence[0] == output_sharding_spec.sharding_sequence[-1]
|
||||
|
||||
|
||||
@run_on_environment_flag(name='AUTO_PARALLEL')
|
||||
@pytest.mark.dist
|
||||
@rerun_if_address_is_in_use()
|
||||
def test_linear_handler():
|
||||
world_size = 4
|
||||
run_func_module = partial(check_linear_module_handler, world_size=world_size, port=free_port())
|
||||
mp.spawn(run_func_module, nprocs=world_size)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_linear_handler()
|
Loading…
Reference in New Issue