mirror of https://github.com/hpcaitech/ColossalAI
[pipeline] OPT model pipeline (#4258)
* opt forward and test * pause * finish opt model pipeline * finish opt pipeline * opt forward and test * pause * finish opt model pipeline * finish opt pipeline * fix opt * set transformers version * refactor the test pipelinepull/4445/head
parent
b774d5ea0f
commit
d8408d185c
|
@ -1,3 +1,15 @@
|
|||
import logging
|
||||
import random
|
||||
from functools import partial
|
||||
from types import MethodType
|
||||
from typing import Callable, Dict, List, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from torch import Tensor, nn
|
||||
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
||||
|
||||
from colossalai.pipeline.stage_manager import PipelineStageManager
|
||||
from colossalai.shardformer.layer import FusedLayerNorm, Linear1D_Col, Linear1D_Row, VocabParallelEmbedding1D
|
||||
|
||||
from .base_policy import ModulePolicyDescription, Policy, SubModuleReplacementDescription
|
||||
|
@ -94,12 +106,69 @@ class OPTPolicy(Policy):
|
|||
def postprocess(self):
|
||||
return self.model
|
||||
|
||||
def get_held_layers(self) -> List[nn.Module]:
|
||||
"""Get pipeline layers for current stage."""
|
||||
assert self.pipeline_stage_manager is not None
|
||||
|
||||
if self.model.__class__.__name__ == 'OPTModel':
|
||||
module = self.model.decoder
|
||||
else:
|
||||
module = self.model.model.decoder
|
||||
stage_manager = self.pipeline_stage_manager
|
||||
|
||||
held_layers = []
|
||||
layers_per_stage = self.distribute_layers(len(module.layers), stage_manager.num_stages)
|
||||
if stage_manager.is_first_stage():
|
||||
held_layers.append(module.embed_tokens)
|
||||
held_layers.append(module.embed_positions)
|
||||
held_layers.append(module.project_in)
|
||||
start_idx, end_idx = self.get_stage_index(layers_per_stage, stage_manager.stage)
|
||||
held_layers.extend(module.layers[start_idx:end_idx])
|
||||
if stage_manager.is_last_stage():
|
||||
held_layers.append(module.final_layer_norm)
|
||||
held_layers.append(module.project_out)
|
||||
return held_layers
|
||||
|
||||
def set_pipeline_forward(self, model_cls: nn.Module, new_forward: Callable, policy: Dict) -> None:
|
||||
"""If under pipeline parallel setting, replacing the original forward method of huggingface
|
||||
to customized forward method, and add this changing to policy."""
|
||||
if self.pipeline_stage_manager:
|
||||
stage_manager = self.pipeline_stage_manager
|
||||
if self.model.__class__.__name__ == 'OPTModel':
|
||||
module = self.model.decoder
|
||||
else:
|
||||
module = self.model.model.decoder
|
||||
|
||||
layers_per_stage = Policy.distribute_layers(len(module.layers), stage_manager.num_stages)
|
||||
stage_index = Policy.get_stage_index(layers_per_stage, stage_manager.stage)
|
||||
method_replacement = {'forward': partial(new_forward, stage_manager=stage_manager, stage_index=stage_index)}
|
||||
self.append_or_create_method_replacement(description=method_replacement,
|
||||
policy=policy,
|
||||
target_key=model_cls)
|
||||
|
||||
|
||||
class OPTModelPolicy(OPTPolicy):
|
||||
|
||||
def __init__(self) -> None:
|
||||
super().__init__()
|
||||
|
||||
def module_policy(self):
|
||||
from transformers.models.opt.modeling_opt import OPTModel
|
||||
|
||||
policy = super().module_policy()
|
||||
if self.pipeline_stage_manager:
|
||||
self.set_pipeline_forward(model_cls=OPTModel,
|
||||
new_forward=OPTPipelineForwards.opt_model_forward,
|
||||
policy=policy)
|
||||
return policy
|
||||
|
||||
def get_held_layers(self) -> List[nn.Module]:
|
||||
return super().get_held_layers()
|
||||
|
||||
def get_shared_params(self) -> List[Dict[int, Tensor]]:
|
||||
"""No shared params in OPTModel."""
|
||||
return []
|
||||
|
||||
|
||||
class OPTForCausalLMPolicy(OPTPolicy):
|
||||
|
||||
|
@ -113,16 +182,681 @@ class OPTForCausalLMPolicy(OPTPolicy):
|
|||
suffix="lm_head", target_module=Linear1D_Col, kwargs=dict(gather_output=True)),
|
||||
policy=policy,
|
||||
target_key=OPTForCausalLM)
|
||||
|
||||
if self.pipeline_stage_manager:
|
||||
self.set_pipeline_forward(model_cls=OPTForCausalLM,
|
||||
new_forward=OPTPipelineForwards.opt_for_causal_lm_forward,
|
||||
policy=policy)
|
||||
|
||||
return policy
|
||||
|
||||
def get_held_layers(self) -> List[nn.Module]:
|
||||
held_layers = super().get_held_layers()
|
||||
if self.pipeline_stage_manager.is_last_stage():
|
||||
held_layers.append(self.model.lm_head)
|
||||
return held_layers
|
||||
|
||||
def get_shared_params(self) -> List[Dict[int, Tensor]]:
|
||||
opt_model = self.model
|
||||
num_stages = self.pipeline_stage_manager.num_stages
|
||||
if self.pipeline_stage_manager and num_stages > 1:
|
||||
if id(opt_model.model.decoder.embed_tokens.weight) == id(opt_model.lm_head.weight):
|
||||
return [{0: opt_model.model.decoder.embed_tokens.weight, num_stages - 1: opt_model.lm_head.weight}]
|
||||
|
||||
def postprocess(self):
|
||||
if self.shard_config.enable_tensor_parallelism and self.pipeline_stage_manager is None:
|
||||
binding_map = {
|
||||
'model.decoder.embed_tokens': 'lm_head',
|
||||
}
|
||||
|
||||
for k, v in binding_map.items():
|
||||
src_mod = getattr_(self.model, k)
|
||||
dst_mod = getattr_(self.model, v)
|
||||
dst_mod.weight = src_mod.weight
|
||||
|
||||
return self.model
|
||||
|
||||
|
||||
class OPTForSequenceClassificationPolicy(OPTPolicy):
|
||||
|
||||
def __init__(self) -> None:
|
||||
super().__init__()
|
||||
|
||||
def module_policy(self):
|
||||
from transformers.models.opt.modeling_opt import OPTForSequenceClassification
|
||||
|
||||
policy = super().module_policy()
|
||||
if self.pipeline_stage_manager:
|
||||
self.set_pipeline_forward(model_cls=OPTForSequenceClassification,
|
||||
new_forward=OPTPipelineForwards.opt_for_sequence_classification_forward,
|
||||
policy=policy)
|
||||
|
||||
return policy
|
||||
|
||||
def get_held_layers(self) -> List[nn.Module]:
|
||||
held_layers = super().get_held_layers()
|
||||
if self.pipeline_stage_manager.is_last_stage():
|
||||
held_layers.append(self.model.score)
|
||||
return held_layers
|
||||
|
||||
def get_shared_params(self) -> List[Dict[int, Tensor]]:
|
||||
"no shared params in OPTForSequenceClassification"
|
||||
return []
|
||||
|
||||
|
||||
class OPTForQuestionAnsweringPolicy(OPTPolicy):
|
||||
|
||||
def __init__(self) -> None:
|
||||
super().__init__()
|
||||
|
||||
def module_policy(self):
|
||||
from transformers.models.opt.modeling_opt import OPTForQuestionAnswering
|
||||
|
||||
policy = super().module_policy()
|
||||
if self.pipeline_stage_manager:
|
||||
self.set_pipeline_forward(model_cls=OPTForQuestionAnswering,
|
||||
new_forward=OPTPipelineForwards.opt_for_question_answering_forward,
|
||||
policy=policy)
|
||||
|
||||
return policy
|
||||
|
||||
def get_held_layers(self) -> List[nn.Module]:
|
||||
held_layers = super().get_held_layers()
|
||||
if self.pipeline_stage_manager.is_last_stage():
|
||||
held_layers.append(self.model.qa_outputs)
|
||||
return held_layers
|
||||
|
||||
def get_shared_params(self) -> List[Dict[int, Tensor]]:
|
||||
"no shared params in OPTForSequenceClassification"
|
||||
return []
|
||||
|
||||
|
||||
class OPTPipelineForwards:
|
||||
'''
|
||||
This class serves as a micro library for forward function substitution of OPT models
|
||||
under pipeline setting.
|
||||
'''
|
||||
|
||||
@staticmethod
|
||||
def _prepare_decoder_attention_mask(attention_mask, input_shape, _dtype, device, past_key_values_length):
|
||||
# create causal mask
|
||||
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
||||
from transformers.models.opt.modeling_opt import _make_causal_mask
|
||||
combined_attention_mask = None
|
||||
if input_shape[-1] > 1:
|
||||
combined_attention_mask = _make_causal_mask(
|
||||
input_shape,
|
||||
_dtype,
|
||||
device,
|
||||
past_key_values_length=past_key_values_length,
|
||||
)
|
||||
|
||||
if attention_mask is not None:
|
||||
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
||||
expanded_attn_mask = OPTPipelineForwards._expand_mask(attention_mask, _dtype,
|
||||
tgt_len=input_shape[-1]).to(device)
|
||||
combined_attention_mask = (expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask +
|
||||
combined_attention_mask)
|
||||
|
||||
return combined_attention_mask
|
||||
|
||||
@staticmethod
|
||||
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
|
||||
"""
|
||||
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
|
||||
"""
|
||||
bsz, src_len = mask.size()
|
||||
tgt_len = tgt_len if tgt_len is not None else src_len
|
||||
|
||||
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
|
||||
|
||||
inverted_mask = 1.0 - expanded_mask
|
||||
|
||||
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
|
||||
|
||||
@staticmethod
|
||||
def opt_model_forward(
|
||||
self: 'OPTModel',
|
||||
input_ids: torch.LongTensor = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
head_mask: Optional[torch.Tensor] = None,
|
||||
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
||||
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
stage_manager: Optional[PipelineStageManager] = None,
|
||||
hidden_states: Optional[torch.FloatTensor] = None,
|
||||
stage_index: Optional[List[int]] = None,
|
||||
) -> Union[Tuple, 'BaseModelOutputWithPast']:
|
||||
'''
|
||||
This forward method is modified based on transformers.models.opt.modeling_opt.OPTModel.forward
|
||||
'''
|
||||
|
||||
from transformers.modeling_outputs import BaseModelOutputWithPast
|
||||
from transformers.utils import logging
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||||
output_hidden_states = (output_hidden_states
|
||||
if output_hidden_states is not None else self.config.output_hidden_states)
|
||||
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
|
||||
decoder = self.decoder
|
||||
if stage_manager.is_first_stage():
|
||||
# retrieve input_ids and inputs_embeds
|
||||
if input_ids is not None and inputs_embeds is not None:
|
||||
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
|
||||
elif input_ids is not None:
|
||||
input_shape = input_ids.size()
|
||||
input_ids = input_ids.view(-1, input_shape[-1])
|
||||
elif inputs_embeds is not None:
|
||||
input_shape = inputs_embeds.size()[:-1]
|
||||
else:
|
||||
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
|
||||
|
||||
batch_size, seq_length = input_shape
|
||||
|
||||
if inputs_embeds is None:
|
||||
inputs_embeds = decoder.embed_tokens(input_ids)
|
||||
|
||||
if decoder.project_in is not None:
|
||||
inputs_embeds = decoder.project_in(inputs_embeds)
|
||||
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
||||
_dtype = inputs_embeds.dtype
|
||||
|
||||
else:
|
||||
if hidden_states is None:
|
||||
raise ValueError("hidden_states shouln't be None for intermediate stages.")
|
||||
input_shape = hidden_states.size()[:-1]
|
||||
batch_size, seq_length = input_shape[0], input_shape[1]
|
||||
device = hidden_states.device
|
||||
_dtype = hidden_states.dtype
|
||||
|
||||
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
|
||||
# required mask seq length can be calculated via length of past
|
||||
mask_seq_length = past_key_values_length + seq_length
|
||||
# embed positions
|
||||
if attention_mask is None:
|
||||
attention_mask = torch.ones(batch_size, mask_seq_length, device=device)
|
||||
elif attention_mask.shape[1] != mask_seq_length:
|
||||
raise ValueError(
|
||||
f"The provided attention mask has length {attention_mask.shape[1]}, but its length should be "
|
||||
f"{mask_seq_length} (sum of the lengths of current and past inputs)")
|
||||
|
||||
causal_attention_mask = OPTPipelineForwards._prepare_decoder_attention_mask(attention_mask, input_shape, _dtype,
|
||||
device, past_key_values_length)
|
||||
|
||||
if stage_manager.is_first_stage():
|
||||
pos_embeds = decoder.embed_positions(attention_mask, past_key_values_length)
|
||||
hidden_states = inputs_embeds + pos_embeds
|
||||
|
||||
if decoder.gradient_checkpointing and decoder.training:
|
||||
if use_cache:
|
||||
logger.warning_once(
|
||||
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...")
|
||||
use_cache = False
|
||||
|
||||
# TODO: left the recording kv-value tensors as () or None type, this feature may be added in the future.
|
||||
if past_key_values:
|
||||
logger.warning_once('Non-empty past_key_values is not supported for pipeline models at the moment.')
|
||||
past_key_values = None
|
||||
if output_attentions:
|
||||
logger.warning_once('output_attentions=True is not supported for pipeline models at the moment.')
|
||||
output_attentions = False
|
||||
if output_hidden_states:
|
||||
logger.warning_once('output_hidden_states=True is not supported for pipeline models at the moment.')
|
||||
output_hidden_states = False
|
||||
if use_cache:
|
||||
logger.warning_once('use_cache=True is not supported for pipeline models at the moment.')
|
||||
use_cache = False
|
||||
|
||||
# decoder layers
|
||||
all_hidden_states = () if output_hidden_states else None
|
||||
all_self_attns = () if output_attentions else None
|
||||
next_decoder_cache = () if use_cache else None
|
||||
|
||||
# check if head_mask has a correct number of layers specified if desired
|
||||
for attn_mask, mask_name in zip([head_mask], ["head_mask"]):
|
||||
if attn_mask is not None:
|
||||
if attn_mask.size()[0] != (len(decoder.layers)):
|
||||
raise ValueError(
|
||||
f"The `{mask_name}` should be specified for {len(decoder.layers)} layers, but it is for"
|
||||
f" {head_mask.size()[0]}.")
|
||||
|
||||
start_idx, end_idx = stage_index[0], stage_index[1]
|
||||
|
||||
torch.cuda.set_device(device)
|
||||
|
||||
for idx in range(start_idx, end_idx):
|
||||
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
|
||||
decoder_layer = decoder.layers[idx]
|
||||
|
||||
if output_hidden_states:
|
||||
all_hidden_states += (hidden_states,)
|
||||
|
||||
dropout_probability = random.uniform(0, 1)
|
||||
if decoder.training and (dropout_probability < decoder.layerdrop):
|
||||
continue
|
||||
|
||||
past_key_value = past_key_values[idx] if past_key_values is not None else None
|
||||
|
||||
if decoder.gradient_checkpointing and decoder.training:
|
||||
|
||||
def create_custom_forward(module):
|
||||
|
||||
def custom_forward(*inputs):
|
||||
# None for past_key_value
|
||||
return module(*inputs, output_attentions, None)
|
||||
|
||||
return custom_forward
|
||||
|
||||
layer_outputs = torch.utils.checkpoint.checkpoint(
|
||||
create_custom_forward(decoder_layer),
|
||||
hidden_states,
|
||||
causal_attention_mask,
|
||||
head_mask[idx] if head_mask is not None else None,
|
||||
None,
|
||||
)
|
||||
else:
|
||||
layer_outputs = decoder_layer(
|
||||
hidden_states,
|
||||
attention_mask=causal_attention_mask,
|
||||
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
|
||||
past_key_value=past_key_value,
|
||||
output_attentions=output_attentions,
|
||||
use_cache=use_cache,
|
||||
)
|
||||
|
||||
hidden_states = layer_outputs[0]
|
||||
|
||||
if use_cache:
|
||||
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
|
||||
|
||||
if output_attentions:
|
||||
all_self_attns += (layer_outputs[1],)
|
||||
|
||||
if stage_manager.is_last_stage():
|
||||
if decoder.final_layer_norm is not None:
|
||||
hidden_states = decoder.final_layer_norm(hidden_states)
|
||||
if decoder.project_out is not None:
|
||||
hidden_states = decoder.project_out(hidden_states)
|
||||
|
||||
# add hidden states from the last decoder layer
|
||||
if output_hidden_states:
|
||||
all_hidden_states += (hidden_states,)
|
||||
|
||||
next_cache = next_decoder_cache if use_cache else None
|
||||
|
||||
if stage_manager.is_last_stage():
|
||||
if not return_dict:
|
||||
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
||||
|
||||
return BaseModelOutputWithPast(
|
||||
last_hidden_state=hidden_states,
|
||||
past_key_values=next_cache,
|
||||
hidden_states=all_hidden_states,
|
||||
attentions=all_self_attns,
|
||||
)
|
||||
else:
|
||||
return {'hidden_states': hidden_states}
|
||||
|
||||
@staticmethod
|
||||
def opt_for_causal_lm_forward(
|
||||
self: 'OPTForCausalLM',
|
||||
input_ids: torch.LongTensor = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
head_mask: Optional[torch.Tensor] = None,
|
||||
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
||||
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||||
labels: Optional[torch.LongTensor] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
stage_manager: Optional[PipelineStageManager] = None,
|
||||
hidden_states: Optional[torch.FloatTensor] = None,
|
||||
stage_index: Optional[List[int]] = None,
|
||||
) -> Union[Tuple, 'CausalLMOutputWithPast']:
|
||||
r"""
|
||||
Args:
|
||||
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
||||
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
|
||||
provide it.
|
||||
|
||||
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
||||
[`PreTrainedTokenizer.__call__`] for details.
|
||||
|
||||
[What are input IDs?](../glossary#input-ids)
|
||||
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||||
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
||||
|
||||
- 1 for tokens that are **not masked**,
|
||||
- 0 for tokens that are **masked**.
|
||||
|
||||
[What are attention masks?](../glossary#attention-mask)
|
||||
head_mask (`torch.Tensor` of shape `(num_hidden_layers, num_attention_heads)`, *optional*):
|
||||
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
|
||||
|
||||
- 1 indicates the head is **not masked**,
|
||||
- 0 indicates the head is **masked**.
|
||||
|
||||
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
||||
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
||||
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
|
||||
shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. The two additional
|
||||
tensors are only required when the model is used as a decoder in a Sequence to Sequence model.
|
||||
|
||||
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
|
||||
cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
|
||||
|
||||
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
|
||||
that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
|
||||
all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
||||
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
||||
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
|
||||
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
|
||||
than the model's internal embedding lookup matrix.
|
||||
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||||
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
||||
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
||||
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
||||
use_cache (`bool`, *optional*):
|
||||
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
||||
(see `past_key_values`).
|
||||
output_attentions (`bool`, *optional*):
|
||||
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
||||
returned tensors for more detail.
|
||||
output_hidden_states (`bool`, *optional*):
|
||||
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
||||
for more detail.
|
||||
return_dict (`bool`, *optional*):
|
||||
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
||||
|
||||
Returns:
|
||||
|
||||
Example:
|
||||
|
||||
```python
|
||||
>>> from transformers import AutoTokenizer, OPTForCausalLM
|
||||
|
||||
>>> model = OPTForCausalLM.from_pretrained("facebook/opt-350m")
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m")
|
||||
|
||||
>>> prompt = "Hey, are you consciours? Can you talk to me?"
|
||||
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
||||
|
||||
>>> # Generate
|
||||
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
||||
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
||||
"Hey, are you consciours? Can you talk to me?\nI'm not consciours, but I can talk to you."
|
||||
```"""
|
||||
from transformers.modeling_outputs import CausalLMOutputWithPast
|
||||
|
||||
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||||
output_hidden_states = (output_hidden_states
|
||||
if output_hidden_states is not None else self.config.output_hidden_states)
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
|
||||
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
||||
outputs = OPTPipelineForwards.opt_model_forward(
|
||||
self.model,
|
||||
input_ids=input_ids,
|
||||
attention_mask=attention_mask,
|
||||
head_mask=head_mask,
|
||||
past_key_values=past_key_values,
|
||||
inputs_embeds=inputs_embeds,
|
||||
use_cache=use_cache,
|
||||
output_attentions=output_attentions,
|
||||
output_hidden_states=output_hidden_states,
|
||||
return_dict=return_dict,
|
||||
stage_manager=stage_manager,
|
||||
hidden_states=hidden_states,
|
||||
stage_index=stage_index,
|
||||
)
|
||||
if stage_manager.is_last_stage():
|
||||
logits = self.lm_head(outputs[0]).contiguous()
|
||||
loss = None
|
||||
if labels is not None:
|
||||
# move labels to correct device to enable model parallelism
|
||||
labels = labels.to(logits.device)
|
||||
# Shift so that tokens < n predict n
|
||||
shift_logits = logits[..., :-1, :].contiguous()
|
||||
shift_labels = labels[..., 1:].contiguous()
|
||||
# Flatten the tokens
|
||||
loss_fct = CrossEntropyLoss()
|
||||
loss = loss_fct(shift_logits.view(-1, self.config.vocab_size), shift_labels.view(-1))
|
||||
if not return_dict:
|
||||
output = (logits,) + outputs[1:]
|
||||
return (loss,) + output if loss is not None else output
|
||||
|
||||
return CausalLMOutputWithPast(
|
||||
loss=loss,
|
||||
logits=logits,
|
||||
past_key_values=outputs.past_key_values,
|
||||
hidden_states=outputs.hidden_states,
|
||||
attentions=outputs.attentions,
|
||||
)
|
||||
else:
|
||||
hidden_states = outputs.get('hidden_states')
|
||||
return {'hidden_states': hidden_states}
|
||||
|
||||
@staticmethod
|
||||
def opt_for_sequence_classification_forward(
|
||||
self: 'OPTForSequenceClassification',
|
||||
input_ids: Optional[torch.LongTensor] = None,
|
||||
attention_mask: Optional[torch.FloatTensor] = None,
|
||||
head_mask: Optional[torch.FloatTensor] = None,
|
||||
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
||||
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||||
labels: Optional[torch.LongTensor] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
stage_manager: Optional[PipelineStageManager] = None,
|
||||
hidden_states: Optional[torch.FloatTensor] = None,
|
||||
stage_index: Optional[List[int]] = None,
|
||||
) -> Union[Tuple, 'SequenceClassifierOutputWithPast']:
|
||||
r"""
|
||||
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
||||
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
||||
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
||||
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
||||
"""
|
||||
from transformers.modeling_outputs import SequenceClassifierOutputWithPast
|
||||
from transformers.utils import logging
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
|
||||
transformer_outputs = OPTPipelineForwards.opt_model_forward(self.model,
|
||||
input_ids,
|
||||
past_key_values=past_key_values,
|
||||
attention_mask=attention_mask,
|
||||
head_mask=head_mask,
|
||||
inputs_embeds=inputs_embeds,
|
||||
use_cache=use_cache,
|
||||
output_attentions=output_attentions,
|
||||
output_hidden_states=output_hidden_states,
|
||||
return_dict=return_dict,
|
||||
stage_manager=stage_manager,
|
||||
hidden_states=hidden_states,
|
||||
stage_index=stage_index)
|
||||
|
||||
if stage_manager.is_last_stage():
|
||||
hidden_states = transformer_outputs[0]
|
||||
logits = self.score(hidden_states)
|
||||
|
||||
batch_size = input_ids.shape[0] if input_ids is not None else hidden_states.shape[0]
|
||||
|
||||
if self.config.pad_token_id is None:
|
||||
sequence_lengths = -1
|
||||
else:
|
||||
if input_ids is not None:
|
||||
sequence_lengths = (torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1).to(logits.device)
|
||||
else:
|
||||
sequence_lengths = -1
|
||||
logger.warning(
|
||||
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
|
||||
"unexpected if using padding tokens in conjunction with `inputs_embeds.`")
|
||||
|
||||
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
||||
|
||||
loss = None
|
||||
if labels is not None:
|
||||
if self.config.problem_type is None:
|
||||
if self.num_labels == 1:
|
||||
self.config.problem_type = "regression"
|
||||
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
||||
self.config.problem_type = "single_label_classification"
|
||||
else:
|
||||
self.config.problem_type = "multi_label_classification"
|
||||
|
||||
if self.config.problem_type == "regression":
|
||||
loss_fct = MSELoss()
|
||||
if self.num_labels == 1:
|
||||
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
||||
else:
|
||||
loss = loss_fct(pooled_logits, labels)
|
||||
elif self.config.problem_type == "single_label_classification":
|
||||
loss_fct = CrossEntropyLoss()
|
||||
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
|
||||
elif self.config.problem_type == "multi_label_classification":
|
||||
loss_fct = BCEWithLogitsLoss()
|
||||
loss = loss_fct(pooled_logits, labels)
|
||||
|
||||
if not return_dict:
|
||||
output = (pooled_logits,) + transformer_outputs[1:]
|
||||
return ((loss,) + output) if loss is not None else output
|
||||
|
||||
return SequenceClassifierOutputWithPast(
|
||||
loss=loss,
|
||||
logits=pooled_logits,
|
||||
past_key_values=transformer_outputs.past_key_values,
|
||||
hidden_states=transformer_outputs.hidden_states,
|
||||
attentions=transformer_outputs.attentions,
|
||||
)
|
||||
else:
|
||||
hidden_states = transformer_outputs.get('hidden_states')
|
||||
return {'hidden_states': hidden_states}
|
||||
|
||||
@staticmethod
|
||||
def opt_for_question_answering_forward(
|
||||
self: 'OPTForQuestionAnswering',
|
||||
input_ids: Optional[torch.LongTensor] = None,
|
||||
attention_mask: Optional[torch.FloatTensor] = None,
|
||||
head_mask: Optional[torch.FloatTensor] = None,
|
||||
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
||||
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||||
start_positions: Optional[torch.LongTensor] = None,
|
||||
end_positions: Optional[torch.LongTensor] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
stage_manager: Optional[PipelineStageManager] = None,
|
||||
hidden_states: Optional[torch.FloatTensor] = None,
|
||||
stage_index: Optional[List[int]] = None,
|
||||
) -> Union[Tuple, 'QuestionAnsweringModelOutput']:
|
||||
r"""
|
||||
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
||||
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
||||
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
||||
are not taken into account for computing the loss.
|
||||
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
||||
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
||||
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
||||
are not taken into account for computing the loss.
|
||||
|
||||
Returns:
|
||||
|
||||
Example:
|
||||
|
||||
```python
|
||||
>>> from transformers import AutoTokenizer, OPTForQuestionAnswering
|
||||
>>> import torch
|
||||
|
||||
>>> torch.manual_seed(4) # doctest: +IGNORE_RESULT
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m")
|
||||
|
||||
>>> # note: we are loading a OPTForQuestionAnswering from the hub here,
|
||||
>>> # so the head will be randomly initialized, hence the predictions will be random
|
||||
>>> model = OPTForQuestionAnswering.from_pretrained("facebook/opt-350m")
|
||||
|
||||
>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
|
||||
|
||||
>>> inputs = tokenizer(question, text, return_tensors="pt")
|
||||
>>> with torch.no_grad():
|
||||
... outputs = model(**inputs)
|
||||
|
||||
>>> answer_start_index = outputs.start_logits.argmax()
|
||||
>>> answer_end_index = outputs.end_logits.argmax()
|
||||
|
||||
>>> answer_offset = len(tokenizer(question)[0])
|
||||
|
||||
>>> predict_answer_tokens = inputs.input_ids[
|
||||
... 0, answer_offset + answer_start_index : answer_offset + answer_end_index + 1
|
||||
... ]
|
||||
>>> predicted = tokenizer.decode(predict_answer_tokens)
|
||||
>>> predicted
|
||||
' a nice puppet'
|
||||
```"""
|
||||
from transformers.modeling_outputs import QuestionAnsweringModelOutput
|
||||
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
|
||||
transformer_outputs = OPTPipelineForwards.opt_model_forward(self.model,
|
||||
input_ids,
|
||||
past_key_values=past_key_values,
|
||||
attention_mask=attention_mask,
|
||||
head_mask=head_mask,
|
||||
inputs_embeds=inputs_embeds,
|
||||
use_cache=use_cache,
|
||||
output_attentions=output_attentions,
|
||||
output_hidden_states=output_hidden_states,
|
||||
return_dict=return_dict,
|
||||
stage_manager=stage_manager,
|
||||
hidden_states=hidden_states,
|
||||
stage_index=stage_index)
|
||||
if stage_manager.is_last_stage():
|
||||
hidden_states = transformer_outputs[0]
|
||||
|
||||
logits = self.qa_outputs(hidden_states)
|
||||
start_logits, end_logits = logits.split(1, dim=-1)
|
||||
start_logits = start_logits.squeeze(-1).contiguous()
|
||||
end_logits = end_logits.squeeze(-1).contiguous()
|
||||
|
||||
total_loss = None
|
||||
if start_positions is not None and end_positions is not None:
|
||||
# If we are on multi-GPU, split add a dimension
|
||||
if len(start_positions.size()) > 1:
|
||||
start_positions = start_positions.squeeze(-1)
|
||||
if len(end_positions.size()) > 1:
|
||||
end_positions = end_positions.squeeze(-1)
|
||||
# sometimes the start/end positions are outside our model inputs, we ignore these terms
|
||||
ignored_index = start_logits.size(1)
|
||||
start_positions = start_positions.clamp(0, ignored_index)
|
||||
end_positions = end_positions.clamp(0, ignored_index)
|
||||
|
||||
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
|
||||
start_loss = loss_fct(start_logits, start_positions)
|
||||
end_loss = loss_fct(end_logits, end_positions)
|
||||
total_loss = (start_loss + end_loss) / 2
|
||||
|
||||
if not return_dict:
|
||||
output = (start_logits, end_logits) + transformer_outputs[2:]
|
||||
return ((total_loss,) + output) if total_loss is not None else output
|
||||
|
||||
return QuestionAnsweringModelOutput(
|
||||
loss=total_loss,
|
||||
start_logits=start_logits,
|
||||
end_logits=end_logits,
|
||||
hidden_states=transformer_outputs.hidden_states,
|
||||
attentions=transformer_outputs.attentions,
|
||||
)
|
||||
else:
|
||||
hidden_states = transformer_outputs.get('hidden_states')
|
||||
return {'hidden_states': hidden_states}
|
||||
|
|
|
@ -8,61 +8,11 @@ import colossalai
|
|||
from colossalai.cluster import ProcessGroupMesh
|
||||
from colossalai.pipeline.stage_manager import PipelineStageManager
|
||||
from colossalai.shardformer.policies.base_policy import Policy
|
||||
from colossalai.shardformer.policies.bert import BertForPreTrainingPolicy, bert_for_pretraining_forward
|
||||
from colossalai.shardformer.policies.bert import BertForPreTrainingPolicy
|
||||
from colossalai.shardformer.shard import ShardConfig
|
||||
from colossalai.testing import rerun_if_address_is_in_use, spawn
|
||||
|
||||
|
||||
def check_bert_for_pretraining_forward():
|
||||
configuration = BertConfig()
|
||||
model = BertForPreTraining(configuration)
|
||||
DP_DIM, PP_DIM = 0, 1
|
||||
DP_SIZE, PP_SIZE = 2, 2
|
||||
RANK_TO_COORDINATE = {
|
||||
0: (0, 0),
|
||||
1: (0, 1),
|
||||
2: (1, 0),
|
||||
3: (1, 1),
|
||||
}
|
||||
PP_RANKS_IN_GROUP = {
|
||||
0: [0, 1],
|
||||
1: [0, 1],
|
||||
2: [2, 3],
|
||||
3: [2, 3],
|
||||
}
|
||||
pg_mesh = ProcessGroupMesh(DP_SIZE, PP_SIZE)
|
||||
# print(pg_mesh)
|
||||
|
||||
stage_manager = PipelineStageManager(pg_mesh, PP_DIM)
|
||||
rank = dist.get_rank()
|
||||
# print(rank)
|
||||
layers_per_stage = Policy.distribute_layers(len(model.bert.encoder.layer), 2)
|
||||
stage_index = Policy.get_stage_index(layers_per_stage, stage_manager.stage)
|
||||
|
||||
x = torch.randint(0, 1000, (2, 3))
|
||||
hidden_states = torch.randint(0, 1000, (2, 3, 768)).to(torch.float32)
|
||||
if stage_manager.stage == 0:
|
||||
attention_mask = torch.ones_like(x)
|
||||
output = bert_for_pretraining_forward(
|
||||
self=model,
|
||||
input_ids=x,
|
||||
attention_mask=attention_mask,
|
||||
stage_manager=stage_manager,
|
||||
stage_index=stage_index,
|
||||
)
|
||||
assert output['hidden_states'].shape == (2, 3, 768)
|
||||
|
||||
else:
|
||||
attention_mask = torch.ones((2, 3))
|
||||
output = bert_for_pretraining_forward(self=model,
|
||||
hidden_states=hidden_states,
|
||||
attention_mask=attention_mask,
|
||||
stage_manager=stage_manager,
|
||||
stage_index=stage_index)
|
||||
assert output[0].shape == (2, 3, 30522)
|
||||
# assert output[1].shape == (2, 768)
|
||||
|
||||
|
||||
def check_bert_for_pretraining_policy():
|
||||
configuration = BertConfig()
|
||||
model = BertForPreTraining(configuration)
|
||||
|
@ -92,12 +42,10 @@ def check_bert_for_pretraining_policy():
|
|||
model_config = ShardConfig(pipeline_stage_manager=stage_manager, enable_tensor_parallelism=False)
|
||||
model_policy.set_shard_config(model_config)
|
||||
layers = model_policy.get_held_layers()
|
||||
assert layers is not None
|
||||
|
||||
|
||||
def run_dist_model(rank, world_size, port):
|
||||
colossalai.launch(config={}, rank=rank, world_size=world_size, port=port, host='localhost')
|
||||
check_bert_for_pretraining_forward()
|
||||
if stage_manager.is_first_stage():
|
||||
assert len(layers) == 6 + 1
|
||||
else:
|
||||
assert len(layers) == 6 + 2
|
||||
|
||||
|
||||
def run_dist_policy(rank, world_size, port):
|
||||
|
@ -105,12 +53,6 @@ def run_dist_policy(rank, world_size, port):
|
|||
check_bert_for_pretraining_policy()
|
||||
|
||||
|
||||
@pytest.mark.dist
|
||||
@rerun_if_address_is_in_use()
|
||||
def test_bert_for_pretraining_forward():
|
||||
spawn(run_dist_model, 4)
|
||||
|
||||
|
||||
@pytest.mark.dist
|
||||
@rerun_if_address_is_in_use()
|
||||
def test_bert_for_pretraining_policy():
|
||||
|
@ -119,5 +61,4 @@ def test_bert_for_pretraining_policy():
|
|||
|
||||
if __name__ == "__main__":
|
||||
"""test the bert for pretraining model forward and bert for pretraining model policy"""
|
||||
test_bert_for_pretraining_forward()
|
||||
test_bert_for_pretraining_policy()
|
||||
|
|
|
@ -8,62 +8,11 @@ import colossalai
|
|||
from colossalai.cluster import ProcessGroupMesh
|
||||
from colossalai.pipeline.stage_manager import PipelineStageManager
|
||||
from colossalai.shardformer.policies.base_policy import Policy
|
||||
from colossalai.shardformer.policies.bert import BertLMHeadModelPolicy, bert_lm_head_model_forward
|
||||
from colossalai.shardformer.policies.bert import BertLMHeadModelPolicy
|
||||
from colossalai.shardformer.shard import ShardConfig
|
||||
from colossalai.testing import rerun_if_address_is_in_use, spawn
|
||||
|
||||
|
||||
def check_bert_lm_head_model_forward():
|
||||
configuration = BertConfig()
|
||||
model = BertLMHeadModel(configuration)
|
||||
DP_DIM, PP_DIM = 0, 1
|
||||
DP_SIZE, PP_SIZE = 2, 2
|
||||
RANK_TO_COORDINATE = {
|
||||
0: (0, 0),
|
||||
1: (0, 1),
|
||||
2: (1, 0),
|
||||
3: (1, 1),
|
||||
}
|
||||
PP_RANKS_IN_GROUP = {
|
||||
0: [0, 1],
|
||||
1: [0, 1],
|
||||
2: [2, 3],
|
||||
3: [2, 3],
|
||||
}
|
||||
pg_mesh = ProcessGroupMesh(DP_SIZE, PP_SIZE)
|
||||
# print(pg_mesh)
|
||||
|
||||
stage_manager = PipelineStageManager(pg_mesh, PP_DIM)
|
||||
rank = dist.get_rank()
|
||||
# print(rank)
|
||||
layers_per_stage = Policy.distribute_layers(len(model.bert.encoder.layer), 2)
|
||||
stage_index = Policy.get_stage_index(layers_per_stage, stage_manager.stage)
|
||||
x = torch.randint(0, 1000, (2, 3))
|
||||
hidden_states = torch.randint(0, 1000, (2, 3, 768)).to(torch.float32)
|
||||
if stage_manager.stage == 0:
|
||||
attention_mask = torch.ones_like(x)
|
||||
|
||||
output = bert_lm_head_model_forward(self=model,
|
||||
input_ids=x,
|
||||
attention_mask=attention_mask,
|
||||
stage_manager=stage_manager,
|
||||
stage_index=stage_index)
|
||||
print(output['hidden_states'].shape)
|
||||
assert output['hidden_states'].shape == (2, 3, 768)
|
||||
|
||||
else:
|
||||
attention_mask = torch.ones((2, 3))
|
||||
output = bert_lm_head_model_forward(self=model,
|
||||
hidden_states=hidden_states,
|
||||
attention_mask=attention_mask,
|
||||
stage_manager=stage_manager,
|
||||
stage_index=stage_index)
|
||||
print(output[0].shape)
|
||||
assert output[0].shape == (2, 3, 30522)
|
||||
|
||||
# assert output[1].shape == (2, 768)
|
||||
|
||||
|
||||
def check_bert_lmhead_policy():
|
||||
configuration = BertConfig()
|
||||
model = BertLMHeadModel(configuration)
|
||||
|
@ -93,12 +42,10 @@ def check_bert_lmhead_policy():
|
|||
model_policy.set_shard_config(model_config)
|
||||
layers = model_policy.get_held_layers()
|
||||
|
||||
assert layers is not None
|
||||
|
||||
|
||||
def run_dist_model(rank, world_size, port):
|
||||
colossalai.launch(config={}, rank=rank, world_size=world_size, port=port, host='localhost')
|
||||
check_bert_lm_head_model_forward()
|
||||
if stage_manager.is_first_stage():
|
||||
assert len(layers) == 6 + 1
|
||||
else:
|
||||
assert len(layers) == 6 + 2
|
||||
|
||||
|
||||
def run_dist_policy(rank, world_size, port):
|
||||
|
@ -106,12 +53,6 @@ def run_dist_policy(rank, world_size, port):
|
|||
check_bert_lmhead_policy()
|
||||
|
||||
|
||||
@pytest.mark.dist
|
||||
@rerun_if_address_is_in_use()
|
||||
def test_bert_lm_head_model_forward():
|
||||
spawn(run_dist_model, 4)
|
||||
|
||||
|
||||
@pytest.mark.dist
|
||||
@rerun_if_address_is_in_use()
|
||||
def test_bert_lmhead_policy():
|
||||
|
@ -119,6 +60,5 @@ def test_bert_lmhead_policy():
|
|||
|
||||
|
||||
if __name__ == "__main__":
|
||||
"""test the bert for pretraining model forward and bert for pretraining model policy"""
|
||||
test_bert_lm_head_model_forward()
|
||||
"""test the bert for lm head model policy"""
|
||||
test_bert_lmhead_policy()
|
||||
|
|
|
@ -1,5 +1,8 @@
|
|||
'''
|
||||
In the test policy we only test policy: held layers and others, as the tests for forward logic are done in test_shardformer/test_model
|
||||
'''
|
||||
|
||||
import pytest
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
from transformers.models.bert.modeling_bert import BertModel
|
||||
|
||||
|
@ -7,60 +10,11 @@ import colossalai
|
|||
from colossalai.cluster import ProcessGroupMesh
|
||||
from colossalai.pipeline.stage_manager import PipelineStageManager
|
||||
from colossalai.shardformer.policies.base_policy import Policy
|
||||
from colossalai.shardformer.policies.bert import BertModelPolicy, bert_model_forward
|
||||
from colossalai.shardformer.policies.bert import BertModelPolicy
|
||||
from colossalai.shardformer.shard import ShardConfig
|
||||
from colossalai.testing import rerun_if_address_is_in_use, spawn
|
||||
|
||||
|
||||
def check_bert_model_forward():
|
||||
# this test may crash for internet reasons
|
||||
model = BertModel.from_pretrained('bert-base-uncased')
|
||||
DP_DIM, PP_DIM = 0, 1
|
||||
DP_SIZE, PP_SIZE = 2, 2
|
||||
RANK_TO_COORDINATE = {
|
||||
0: (0, 0),
|
||||
1: (0, 1),
|
||||
2: (1, 0),
|
||||
3: (1, 1),
|
||||
}
|
||||
PP_RANKS_IN_GROUP = {
|
||||
0: [0, 1],
|
||||
1: [0, 1],
|
||||
2: [2, 3],
|
||||
3: [2, 3],
|
||||
}
|
||||
pg_mesh = ProcessGroupMesh(DP_SIZE, PP_SIZE)
|
||||
|
||||
# print(pg_mesh)
|
||||
|
||||
stage_manager = PipelineStageManager(pg_mesh, PP_DIM)
|
||||
rank = dist.get_rank()
|
||||
# print(rank)
|
||||
layers_per_stage = Policy.distribute_layers(len(model.encoder.layer), 2)
|
||||
stage_index = Policy.get_stage_index(layers_per_stage, stage_manager.stage)
|
||||
x = torch.randint(0, 1000, (2, 3))
|
||||
hidden_states = torch.randint(0, 1000, (2, 3, 768)).to(torch.float32)
|
||||
if stage_manager.stage == 0:
|
||||
attention_mask = torch.ones_like(x)
|
||||
output = bert_model_forward(self=model,
|
||||
input_ids=x,
|
||||
attention_mask=attention_mask,
|
||||
stage_manager=stage_manager,
|
||||
stage_index=stage_index)
|
||||
assert output['hidden_states'].shape == (2, 3, 768)
|
||||
else:
|
||||
attention_mask = torch.ones((2, 3))
|
||||
output = bert_model_forward(self=model,
|
||||
hidden_states=hidden_states,
|
||||
attention_mask=attention_mask,
|
||||
stage_manager=stage_manager,
|
||||
stage_index=stage_index)
|
||||
print(output[0].shape)
|
||||
assert output[0].shape == (2, 3, 768)
|
||||
|
||||
# assert output[1].shape == (2, 768)
|
||||
|
||||
|
||||
def check_bert_model_policy():
|
||||
model = BertModel.from_pretrained('bert-base-uncased')
|
||||
DP_DIM, PP_DIM = 0, 1
|
||||
|
@ -90,12 +44,10 @@ def check_bert_model_policy():
|
|||
|
||||
layers = model_policy.get_held_layers()
|
||||
|
||||
assert layers is not None
|
||||
|
||||
|
||||
def run_dist_model(rank, world_size, port):
|
||||
colossalai.launch(config={}, rank=rank, world_size=world_size, port=port, host='localhost')
|
||||
check_bert_model_forward()
|
||||
if stage_manager.is_first_stage():
|
||||
assert len(layers) == 6 + 1
|
||||
else:
|
||||
assert len(layers) == 6 + 1
|
||||
|
||||
|
||||
def run_dist_policy(rank, world_size, port):
|
||||
|
@ -103,12 +55,6 @@ def run_dist_policy(rank, world_size, port):
|
|||
check_bert_model_policy()
|
||||
|
||||
|
||||
@pytest.mark.dist
|
||||
@rerun_if_address_is_in_use()
|
||||
def test_bert_model_forward():
|
||||
spawn(run_dist_model, 4)
|
||||
|
||||
|
||||
@pytest.mark.dist
|
||||
@rerun_if_address_is_in_use()
|
||||
def test_bert_model_policy():
|
||||
|
@ -116,6 +62,5 @@ def test_bert_model_policy():
|
|||
|
||||
|
||||
if __name__ == "__main__":
|
||||
"""test the bert model forward and bert model policy"""
|
||||
#test_bert_model_forward()
|
||||
"""test the bert model policy"""
|
||||
test_bert_model_policy()
|
||||
|
|
|
@ -5,61 +5,13 @@ from transformers.models.bloom import BloomConfig, BloomModel
|
|||
|
||||
import colossalai
|
||||
from colossalai.cluster import ProcessGroupMesh
|
||||
from colossalai.pipeline.policy.bloom import BloomModelPolicy, bloom_model_forward
|
||||
from colossalai.pipeline.stage_manager import PipelineStageManager
|
||||
from colossalai.shardformer.policies.base_policy import Policy
|
||||
from colossalai.shardformer.policies.bloom import BloomModelPolicy
|
||||
from colossalai.shardformer.shard import ShardConfig
|
||||
from colossalai.testing import rerun_if_address_is_in_use, spawn
|
||||
|
||||
|
||||
def check_bloom_model_forward():
|
||||
# create a BloomModel
|
||||
configuration = BloomConfig()
|
||||
model = BloomModel(configuration)
|
||||
DP_DIM, PP_DIM = 0, 1
|
||||
DP_SIZE, PP_SIZE = 2, 2
|
||||
RANK_TO_COORDINATE = {
|
||||
0: (0, 0),
|
||||
1: (0, 1),
|
||||
2: (1, 0),
|
||||
3: (1, 1),
|
||||
}
|
||||
PP_RANKS_IN_GROUP = {
|
||||
0: [0, 1],
|
||||
1: [0, 1],
|
||||
2: [2, 3],
|
||||
3: [2, 3],
|
||||
}
|
||||
pg_mesh = ProcessGroupMesh(DP_SIZE, PP_SIZE)
|
||||
# print(pg_mesh)
|
||||
|
||||
stage_manager = PipelineStageManager(pg_mesh, PP_DIM)
|
||||
rank = dist.get_rank()
|
||||
# print(rank)
|
||||
|
||||
x = torch.randint(0, 1000, (2, 3))
|
||||
hidden_states = torch.randint(0, 1000, (2, 3, 64)).to(torch.float32)
|
||||
if stage_manager.is_first_stage():
|
||||
attention_mask = torch.ones_like(x)
|
||||
output = bloom_model_forward(self=model,
|
||||
input_ids=x,
|
||||
attention_mask=attention_mask,
|
||||
stage_manager=stage_manager)
|
||||
print(output[0].shape)
|
||||
assert output[0].shape == (2, 3, 64)
|
||||
print('start the training')
|
||||
else:
|
||||
attention_mask = torch.ones((2, 3))
|
||||
output = bloom_model_forward(self=model,
|
||||
hidden_states=hidden_states,
|
||||
attention_mask=attention_mask,
|
||||
stage_manager=stage_manager)
|
||||
print(output[0].shape)
|
||||
assert output[0].shape == (2, 3, 64)
|
||||
print('end the training')
|
||||
print(output)
|
||||
|
||||
# assert output[1].shape == (2, 768)
|
||||
|
||||
|
||||
def check_bloom_model_policy():
|
||||
# create a BloomModel
|
||||
configuration = BloomConfig()
|
||||
|
@ -84,16 +36,15 @@ def check_bloom_model_policy():
|
|||
stage_manager = PipelineStageManager(pg_mesh, PP_DIM)
|
||||
rank = dist.get_rank()
|
||||
|
||||
model_policy = BloomModelPolicy(stage_manager=stage_manager, num_layers=len(model.h), num_stages=2)
|
||||
assert model_policy.layers_per_stage == [1, 1]
|
||||
layers = model_policy.get_hold_layers(model)
|
||||
for layer in layers:
|
||||
print(layer)
|
||||
|
||||
|
||||
def run_dist_model(rank, world_size, port):
|
||||
colossalai.launch(config={}, rank=rank, world_size=world_size, port=port, host='localhost')
|
||||
check_bloom_model_forward()
|
||||
model_policy = BloomModelPolicy()
|
||||
model_policy.set_model(model)
|
||||
model_config = ShardConfig(pipeline_stage_manager=stage_manager, enable_tensor_parallelism=False)
|
||||
model_policy.set_shard_config(model_config)
|
||||
layers = model_policy.get_held_layers()
|
||||
if stage_manager.is_first_stage():
|
||||
assert len(layers) == 1 + 2
|
||||
else:
|
||||
assert len(layers) == 1 + 1
|
||||
|
||||
|
||||
def run_dist_policy(rank, world_size, port):
|
||||
|
@ -101,15 +52,6 @@ def run_dist_policy(rank, world_size, port):
|
|||
check_bloom_model_policy()
|
||||
|
||||
|
||||
#TODO: Bloom model should be fixed after bert model
|
||||
@pytest.mark.skip(reason="Bloom model should be fixed after bert model")
|
||||
@pytest.mark.dist
|
||||
@rerun_if_address_is_in_use()
|
||||
def test_bloom_model_forward():
|
||||
spawn(run_dist_model, 4)
|
||||
|
||||
|
||||
@pytest.mark.skip(reason="Bloom model should be fixed after bert model")
|
||||
@pytest.mark.dist
|
||||
@rerun_if_address_is_in_use()
|
||||
def test_bloom_model_policy():
|
||||
|
@ -117,7 +59,5 @@ def test_bloom_model_policy():
|
|||
|
||||
|
||||
if __name__ == "__main__":
|
||||
"""test the bloom model forward and bloom model policy"""
|
||||
# test_bloom_model_forward()
|
||||
# test_bloom_model_policy()
|
||||
#TODO: Bloom model should be fixed after bert model is all ready
|
||||
"""test the bloom model policy"""
|
||||
test_bloom_model_policy()
|
||||
|
|
|
@ -0,0 +1,70 @@
|
|||
import pytest
|
||||
import torch
|
||||
|
||||
import colossalai
|
||||
from colossalai.cluster import ProcessGroupMesh
|
||||
from colossalai.logging import disable_existing_loggers
|
||||
from colossalai.pipeline.stage_manager import PipelineStageManager
|
||||
from colossalai.testing import clear_cache_before_run, parameterize, rerun_if_address_is_in_use, spawn
|
||||
from tests.kit.model_zoo import model_zoo
|
||||
from tests.test_shardformer.test_model._utils import build_pipeline_model
|
||||
|
||||
|
||||
def check_forward_backward(org_model, sharded_model, data_gen_fn, output_transform_fn, loss_fn):
|
||||
# TODO: add tests for forward/backward later
|
||||
pass
|
||||
|
||||
|
||||
@parameterize('enable_tensor_parallelism', [False])
|
||||
@parameterize('enable_fused_normalization', [False])
|
||||
@parameterize('use_lazy_init', [False])
|
||||
#TODO: merge this into test_shard_opt
|
||||
def run_opt_test(enable_fused_normalization, enable_tensor_parallelism, use_lazy_init):
|
||||
DP_DIM, PP_DIM = 0, 1
|
||||
DP_SIZE, PP_SIZE = 2, 2
|
||||
pg_mesh = ProcessGroupMesh(DP_SIZE, PP_SIZE)
|
||||
stage_manager = PipelineStageManager(pg_mesh, PP_DIM)
|
||||
|
||||
sub_model_zoo = model_zoo.get_sub_registry('transformers_opt')
|
||||
for name, (model_fn, data_gen_fn, _, _, _) in sub_model_zoo.items():
|
||||
inputs = data_gen_fn()
|
||||
inputs = {k: v.cuda() for k, v in inputs.items()}
|
||||
input_ids, _ = inputs['input_ids'], inputs['attention_mask']
|
||||
batch_size, seq_len = input_ids.shape
|
||||
hidden_size = 128
|
||||
hidden_state_shape = (batch_size, seq_len, hidden_size)
|
||||
|
||||
if not stage_manager.is_first_stage():
|
||||
# change inputs if not the first stage
|
||||
|
||||
hidden_states = torch.zeros(*hidden_state_shape).cuda()
|
||||
inputs['input_ids'] = None
|
||||
inputs['hidden_states'] = hidden_states
|
||||
|
||||
_, sharded_model = build_pipeline_model(model_fn, stage_manager, enable_fused_normalization,
|
||||
enable_tensor_parallelism, use_lazy_init)
|
||||
sharded_model.train()
|
||||
|
||||
output = sharded_model(**inputs)
|
||||
if stage_manager.is_last_stage():
|
||||
assert output[0] is not None
|
||||
else:
|
||||
assert output['hidden_states'].shape == hidden_state_shape
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
|
||||
def check_opt(rank, world_size, port):
|
||||
disable_existing_loggers()
|
||||
colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||
run_opt_test()
|
||||
|
||||
|
||||
@pytest.mark.dist
|
||||
@rerun_if_address_is_in_use()
|
||||
@clear_cache_before_run()
|
||||
def test_opt():
|
||||
spawn(check_opt, 4)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
test_opt()
|
Loading…
Reference in New Issue