mirror of https://github.com/hpcaitech/ColossalAI
embedding remove attn mask (#474)
parent
7544347145
commit
d70f43dd7a
|
@ -43,7 +43,7 @@ class GPTEmbedding(nn.Module):
|
|||
def word_embedding_weight(self):
|
||||
return self.word_embeddings.weight
|
||||
|
||||
def forward(self, input_ids, attention_mask=None, position_ids=None, tokentype_ids=None):
|
||||
def forward(self, input_ids, position_ids=None, tokentype_ids=None):
|
||||
seq_length = input_ids.size(1)
|
||||
if position_ids is None:
|
||||
position_ids = torch.arange(seq_length, dtype=torch.long, device=get_current_device()).unsqueeze(0)
|
||||
|
@ -52,7 +52,7 @@ class GPTEmbedding(nn.Module):
|
|||
x = x + self.tokentype_embeddings(tokentype_ids)
|
||||
x = self.dropout(x)
|
||||
|
||||
return x, attention_mask
|
||||
return x
|
||||
|
||||
|
||||
@LAYERS.register_module
|
||||
|
@ -285,7 +285,7 @@ class GPT(nn.Module):
|
|||
dtype=dtype)
|
||||
|
||||
def forward(self, input_ids, attention_mask=None):
|
||||
x, attention_mask = self.embed(input_ids, attention_mask)
|
||||
x = self.embed(input_ids)
|
||||
|
||||
# We create a 3D attention mask from a 2D tensor mask.
|
||||
# Sizes are [batch_size, 1, 1, to_seq_length]
|
||||
|
@ -362,7 +362,7 @@ class PipelineGPT(nn.Module):
|
|||
|
||||
def forward(self, x=None, input_ids=None, attention_mask=None):
|
||||
if self.first:
|
||||
x, attention_mask = self.embed(input_ids, attention_mask)
|
||||
x = self.embed(input_ids)
|
||||
|
||||
# We create a 3D attention mask from a 2D tensor mask.
|
||||
# Sizes are [batch_size, 1, 1, to_seq_length]
|
||||
|
|
Loading…
Reference in New Issue