[SC] remove redundant hands on (#1939)

* [sc] SC tutorial for auto checkpoint

* [sc] polish examples

* [sc] polish readme

* [sc] polish readme and help information

* [sc] polish readme and help information

* [sc] modify auto checkpoint benchmark

* [sc] remove imgs

* [sc] remove redundant handson
pull/1941/head
Boyuan Yao 2022-11-14 17:05:21 +08:00 committed by GitHub
parent 9f4fb3f28a
commit d5f5e06d82
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
1 changed files with 0 additions and 107 deletions

View File

@ -1,107 +0,0 @@
import time
from argparse import ArgumentParser
from functools import partial
import matplotlib.pyplot as plt
import torch
import torch.multiprocessing as mp
import torchvision.models as tm
from bench_utils import bench_rotor
import colossalai
from colossalai.auto_parallel.checkpoint import CheckpointSolverRotor
from colossalai.fx import metainfo_trace, symbolic_trace
from colossalai.utils import free_port
def data_gen(batch_size, shape, device='cuda'):
"""
Generate random data for benchmarking
"""
data = torch.empty(batch_size, *shape, device=device)
label = torch.empty(batch_size, dtype=torch.long, device=device).random_(1000)
return (data,), label
def _resnet50_benchmark(rank, world_size, port, batch_size, num_steps, sample_points, free_memory, start_factor):
colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
model = tm.resnet50()
# trace and benchmark
gm = symbolic_trace(model)
gm = metainfo_trace(gm, torch.empty(batch_size, 3, 224, 224, device='meta'))
budgets, peak_hist, step_hist = bench_rotor(gm,
torch.nn.CrossEntropyLoss(),
partial(data_gen, batch_size=batch_size, shape=(3, 224, 224)),
num_steps=num_steps,
sample_points=sample_points,
free_memory=free_memory,
start_factor=start_factor)
# print summary
print("==============test summary==============")
for budget, peak, step in zip(budgets, peak_hist, step_hist):
print(f'memory budget: {budget:.3f} MB, peak memory: {peak:.3f} MB, step time: {step:.3f} MS')
# plot valid results
fig, axs = plt.subplots(1, 2, figsize=(16, 8))
valid_idx = step_hist.index(next(step for step in step_hist if step != float("inf")))
# plot peak memory vs. budget memory
axs[0].plot(budgets[valid_idx:], peak_hist[valid_idx:])
axs[0].plot([budgets[valid_idx], budgets[-1]], [budgets[valid_idx], budgets[-1]], linestyle='--')
axs[0].set_xlabel("Budget Memory (MB)")
axs[0].set_ylabel("Peak Memory (MB)")
axs[0].set_title("Peak Memory vs. Budget Memory")
# plot relative step time vs. budget memory
axs[1].plot(peak_hist[valid_idx:], [step_time / step_hist[-1] for step_time in step_hist[valid_idx:]])
axs[1].plot([peak_hist[valid_idx], peak_hist[-1]], [1.0, 1.0], linestyle='--')
axs[1].set_xlabel("Peak Memory (MB)")
axs[1].set_ylabel("Relative Step Time")
axs[1].set_title("Step Time vs. Peak Memory")
axs[1].set_ylim(0.8, 1.5)
# save plot
fig.savefig("resnet50_benchmark.png")
def resnet50_benchmark(batch_size, num_steps, sample_points, free_memory, start_factor):
world_size = 1
run_func_module = partial(_resnet50_benchmark,
world_size=world_size,
port=free_port(),
batch_size=batch_size,
num_steps=num_steps,
sample_points=sample_points,
free_memory=free_memory,
start_factor=start_factor)
mp.spawn(run_func_module, nprocs=world_size)
if __name__ == "__main__":
parser = ArgumentParser("ResNet50 Auto Activation Benchmark")
parser.add_argument("--batch_size", type=int, default=128, help="batch size for benchmark, default 128")
parser.add_argument("--num_steps", type=int, default=5, help="number of test steps for benchmark, default 5")
parser.add_argument(
"--sample_points",
type=int,
default=15,
help=
"number of sample points for benchmark from start memory budget to maximum memory budget (free_memory), default 15"
)
parser.add_argument("--free_memory",
type=int,
default=11000,
help="maximum memory budget in MB for benchmark, default 11000 MB")
parser.add_argument(
"--start_factor",
type=int,
default=4,
help=
"start memory budget factor for benchmark, the start memory budget will be free_memory / start_factor, default 4"
)
args = parser.parse_args()
resnet50_benchmark(args.batch_size, args.num_steps, args.sample_points, args.free_memory * 1024**2,
args.start_factor)