mirror of https://github.com/hpcaitech/ColossalAI
[hotfix] fix ddp for unit test test_gpt2 (#1326)
parent
250be4d31e
commit
d49708ae43
|
@ -21,7 +21,7 @@ class PyTorchProcessGroupDict(metaclass=SingletonMeta):
|
||||||
if pg_key not in self.dict:
|
if pg_key not in self.dict:
|
||||||
|
|
||||||
self.logger = get_dist_logger('ProcessGroup')
|
self.logger = get_dist_logger('ProcessGroup')
|
||||||
self.logger.info(f'NCCL initialize TP group on {rank_list}', ranks=[0])
|
self.logger.info(f'NCCL initialize ProcessGroup on {rank_list}', ranks=[0])
|
||||||
|
|
||||||
self.dict[pg_key] = torch.distributed.new_group(ranks=rank_list, backend=backend)
|
self.dict[pg_key] = torch.distributed.new_group(ranks=rank_list, backend=backend)
|
||||||
return self.dict[pg_key]
|
return self.dict[pg_key]
|
||||||
|
@ -63,7 +63,6 @@ class ProcessGroup:
|
||||||
self._rank_list = ranks
|
self._rank_list = ranks
|
||||||
self._rank_list.sort() # ensure that the list is in order
|
self._rank_list.sort() # ensure that the list is in order
|
||||||
|
|
||||||
self._rank_idx = self._rank_list.index(self._rank)
|
|
||||||
self._world_size = len(self._rank_list)
|
self._world_size = len(self._rank_list)
|
||||||
|
|
||||||
if dp_degree is None and tp_degree is None:
|
if dp_degree is None and tp_degree is None:
|
||||||
|
@ -84,19 +83,22 @@ class ProcessGroup:
|
||||||
f"the world size {self._world_size} should equals to the product of DP degree {self._dp_degree}" \
|
f"the world size {self._world_size} should equals to the product of DP degree {self._dp_degree}" \
|
||||||
f"and TP degree {self._tp_degree}"
|
f"and TP degree {self._tp_degree}"
|
||||||
|
|
||||||
self._tp_rank_list = []
|
self._tp_rank_list = None
|
||||||
self._dp_rank_list = []
|
self._dp_rank_list = None
|
||||||
|
|
||||||
for idx, rank_id in enumerate(self._rank_list):
|
for i in range(self._dp_degree):
|
||||||
# idx and self._rank_idx in the same tp group
|
i_tp_list = [self._rank_list[i * self._tp_degree + j] for j in range(self._tp_degree)]
|
||||||
if idx % self._tp_degree == self._rank_idx % self._tp_degree:
|
PYTORCHPGDICT_.get(i_tp_list, 'nccl')
|
||||||
self._dp_rank_list.append(rank_id)
|
if self._rank in i_tp_list:
|
||||||
if idx // self._tp_degree == self._rank_idx // self._tp_degree:
|
self._tp_rank_list = i_tp_list
|
||||||
self._tp_rank_list.append(rank_id)
|
|
||||||
|
for j in range(self._tp_degree):
|
||||||
|
j_dp_list = [self._rank_list[i * self._tp_degree + j] for i in range(self._dp_degree)]
|
||||||
|
PYTORCHPGDICT_.get(j_dp_list, 'nccl')
|
||||||
|
if self._rank in j_dp_list:
|
||||||
|
self._dp_rank_list = j_dp_list
|
||||||
|
|
||||||
self._has_cpu_groups = False
|
self._has_cpu_groups = False
|
||||||
PYTORCHPGDICT_.get(self._tp_rank_list, 'nccl')
|
|
||||||
PYTORCHPGDICT_.get(self._dp_rank_list, 'nccl')
|
|
||||||
self.is_init = True
|
self.is_init = True
|
||||||
|
|
||||||
def set_cpu_groups(self):
|
def set_cpu_groups(self):
|
||||||
|
@ -106,6 +108,7 @@ class ProcessGroup:
|
||||||
f'{self._rank} Gloo initialize TP group on {self._tp_rank_list}, DP group on {self._dp_rank_list}')
|
f'{self._rank} Gloo initialize TP group on {self._tp_rank_list}, DP group on {self._dp_rank_list}')
|
||||||
PYTORCHPGDICT_.get(self._tp_rank_list, 'gloo')
|
PYTORCHPGDICT_.get(self._tp_rank_list, 'gloo')
|
||||||
PYTORCHPGDICT_.get(self._dp_rank_list, 'gloo')
|
PYTORCHPGDICT_.get(self._dp_rank_list, 'gloo')
|
||||||
|
self._has_cpu_groups = True
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def has_cpu_groups(self):
|
def has_cpu_groups(self):
|
||||||
|
@ -162,7 +165,9 @@ class ProcessGroup:
|
||||||
return PYTORCHPGDICT_.get(self._tp_rank_list, 'nccl')
|
return PYTORCHPGDICT_.get(self._tp_rank_list, 'nccl')
|
||||||
|
|
||||||
def cpu_dp_process_group(self):
|
def cpu_dp_process_group(self):
|
||||||
|
assert self._has_cpu_groups
|
||||||
return PYTORCHPGDICT_.get(self._dp_rank_list, 'gloo')
|
return PYTORCHPGDICT_.get(self._dp_rank_list, 'gloo')
|
||||||
|
|
||||||
def cpu_tp_process_group(self):
|
def cpu_tp_process_group(self):
|
||||||
|
assert self._has_cpu_groups
|
||||||
return PYTORCHPGDICT_.get(self._tp_rank_list, 'gloo')
|
return PYTORCHPGDICT_.get(self._tp_rank_list, 'gloo')
|
||||||
|
|
|
@ -12,16 +12,13 @@ from colossalai.testing import rerun_if_address_is_in_use
|
||||||
from colossalai.utils.cuda import get_current_device
|
from colossalai.utils.cuda import get_current_device
|
||||||
from colossalai.utils import free_port
|
from colossalai.utils import free_port
|
||||||
from colossalai.utils.model.colo_init_context import ColoInitContext
|
from colossalai.utils.model.colo_init_context import ColoInitContext
|
||||||
from colossalai.tensor import ShardSpec, ComputePattern, ComputeSpec, DistSpecManager, ProcessGroup, ColoTensor, ColoTensorSpec
|
from colossalai.tensor import ShardSpec, ComputePattern, ComputeSpec, ProcessGroup, ColoTensor, ColoTensorSpec
|
||||||
from colossalai.nn.parallel.data_parallel import ColoDDP
|
from colossalai.nn.parallel.data_parallel import ColoDDP
|
||||||
from colossalai.core import global_context as gpc
|
|
||||||
from colossalai.context.parallel_mode import ParallelMode
|
|
||||||
from tests.components_to_test.registry import non_distributed_component_funcs
|
from tests.components_to_test.registry import non_distributed_component_funcs
|
||||||
|
|
||||||
|
|
||||||
def init_1d_row_spec(model, pg: ProcessGroup):
|
def init_1d_row_spec(model, pg: ProcessGroup):
|
||||||
tensor_spec = (ShardSpec([0], [pg.tp_world_size()]), ComputeSpec(ComputePattern.TP1D))
|
tensor_spec = (ShardSpec([0], [pg.tp_world_size()]), ComputeSpec(ComputePattern.TP1D))
|
||||||
|
|
||||||
for n, p in model.named_parameters():
|
for n, p in model.named_parameters():
|
||||||
p.set_process_group(pg)
|
p.set_process_group(pg)
|
||||||
if 'weight' in n and 'ln' not in n:
|
if 'weight' in n and 'ln' not in n:
|
||||||
|
@ -50,33 +47,39 @@ def check_grad_equal(model, torch_model, pg: ProcessGroup):
|
||||||
|
|
||||||
|
|
||||||
def run_gpt(init_spec_func, use_ddp):
|
def run_gpt(init_spec_func, use_ddp):
|
||||||
set_seed(13234)
|
|
||||||
world_size = torch.distributed.get_world_size()
|
world_size = torch.distributed.get_world_size()
|
||||||
|
|
||||||
|
# build a PG with TP and DP hybrid
|
||||||
pg = ProcessGroup(dp_degree=(2 if (use_ddp and world_size >= 2) else 1))
|
pg = ProcessGroup(dp_degree=(2 if (use_ddp and world_size >= 2) else 1))
|
||||||
|
|
||||||
|
# set seed make processes of the same tp group use the same seed
|
||||||
|
# set_seed(pg.tp_local_rank())
|
||||||
|
|
||||||
get_components_func = non_distributed_component_funcs.get_callable('gpt2')
|
get_components_func = non_distributed_component_funcs.get_callable('gpt2')
|
||||||
model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func()
|
model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func()
|
||||||
|
|
||||||
|
# make sure torch_model and model has the same parameter values
|
||||||
with ColoInitContext(device=get_current_device()):
|
with ColoInitContext(device=get_current_device()):
|
||||||
model = model_builder()
|
model = model_builder()
|
||||||
model = model.cuda()
|
model = model.cuda()
|
||||||
torch_model = model_builder().cuda()
|
torch_model = model_builder().cuda()
|
||||||
if use_ddp:
|
|
||||||
# torch_model = DDP(torch_model, device_ids=[pg.rank()], process_group=pg)
|
|
||||||
# torch.distributed.barrier()
|
|
||||||
torch_model = DDP(torch_model,
|
|
||||||
device_ids=[gpc.get_global_rank()],
|
|
||||||
process_group=gpc.get_group(ParallelMode.DATA))
|
|
||||||
|
|
||||||
|
if use_ddp:
|
||||||
|
torch_model = DDP(torch_model, device_ids=[pg.rank()], process_group=pg.dp_process_group())
|
||||||
model = ColoDDP(model, process_group=pg)
|
model = ColoDDP(model, process_group=pg)
|
||||||
|
|
||||||
for torch_p, p in zip(torch_model.parameters(), model.parameters()):
|
for torch_p, p in zip(torch_model.parameters(), model.parameters()):
|
||||||
torch_p.data.copy_(p)
|
torch_p.data.copy_(p)
|
||||||
|
|
||||||
init_spec_func(model, pg)
|
init_spec_func(model, pg)
|
||||||
check_param_equal(model, torch_model, pg)
|
|
||||||
model.train()
|
|
||||||
torch_model.train()
|
|
||||||
torch.distributed.barrier()
|
|
||||||
|
|
||||||
|
check_param_equal(model, torch_model, pg)
|
||||||
|
|
||||||
|
# close the dropout in eval mode
|
||||||
|
model.eval()
|
||||||
|
torch_model.eval()
|
||||||
|
set_seed(pg.dp_local_rank())
|
||||||
|
torch.distributed.barrier()
|
||||||
for i, (input_ids, attn_mask) in enumerate(train_dataloader):
|
for i, (input_ids, attn_mask) in enumerate(train_dataloader):
|
||||||
colo_input = ColoTensor.from_torch_tensor(input_ids, ColoTensorSpec(pg))
|
colo_input = ColoTensor.from_torch_tensor(input_ids, ColoTensorSpec(pg))
|
||||||
logits = model(colo_input, attn_mask)
|
logits = model(colo_input, attn_mask)
|
||||||
|
@ -92,21 +95,20 @@ def run_gpt(init_spec_func, use_ddp):
|
||||||
check_grad_equal(model, torch_model, pg)
|
check_grad_equal(model, torch_model, pg)
|
||||||
if i > 0:
|
if i > 0:
|
||||||
break
|
break
|
||||||
|
set_seed(313)
|
||||||
|
|
||||||
|
|
||||||
def run_dist(rank, world_size, port, use_ddp):
|
def run_dist(rank, world_size, port, use_ddp):
|
||||||
if use_ddp and world_size == 1:
|
if use_ddp and world_size == 1:
|
||||||
return
|
return
|
||||||
tp_world_size = world_size // 2 if use_ddp else world_size
|
colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||||
config = dict(parallel=dict(tensor=dict(mode="1d", size=tp_world_size),))
|
|
||||||
colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
|
||||||
run_gpt(init_1d_row_spec, use_ddp)
|
run_gpt(init_1d_row_spec, use_ddp)
|
||||||
run_gpt(init_1d_col_spec, use_ddp)
|
run_gpt(init_1d_col_spec, use_ddp)
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.dist
|
@pytest.mark.dist
|
||||||
@pytest.mark.parametrize('world_size', [1, 4])
|
@pytest.mark.parametrize('world_size', [1, 4])
|
||||||
@pytest.mark.parametrize('use_ddp', [False])
|
@pytest.mark.parametrize('use_ddp', [False, True])
|
||||||
@rerun_if_address_is_in_use()
|
@rerun_if_address_is_in_use()
|
||||||
def test_gpt(world_size, use_ddp):
|
def test_gpt(world_size, use_ddp):
|
||||||
run_func = partial(run_dist, world_size=world_size, port=free_port(), use_ddp=use_ddp)
|
run_func = partial(run_dist, world_size=world_size, port=free_port(), use_ddp=use_ddp)
|
||||||
|
@ -114,4 +116,4 @@ def test_gpt(world_size, use_ddp):
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
test_gpt(4, False)
|
test_gpt(4, use_ddp=True)
|
||||||
|
|
|
@ -77,9 +77,9 @@ def run_1d_hybrid_tp(model_name):
|
||||||
split_param_row_tp1d(p, pg)
|
split_param_row_tp1d(p, pg)
|
||||||
|
|
||||||
model = model.cuda()
|
model = model.cuda()
|
||||||
model.train()
|
model.eval()
|
||||||
if rank == 0:
|
if rank == 0:
|
||||||
model_torch.train()
|
model_torch.eval()
|
||||||
|
|
||||||
colo_optimizer = ColossalaiOptimizer(torch.optim.SGD(model.parameters(), lr=0.1))
|
colo_optimizer = ColossalaiOptimizer(torch.optim.SGD(model.parameters(), lr=0.1))
|
||||||
|
|
||||||
|
@ -89,6 +89,7 @@ def run_1d_hybrid_tp(model_name):
|
||||||
colo_optimizer.zero_grad()
|
colo_optimizer.zero_grad()
|
||||||
if rank == 0:
|
if rank == 0:
|
||||||
optimizer_torch.zero_grad()
|
optimizer_torch.zero_grad()
|
||||||
|
torch.distributed.barrier()
|
||||||
|
|
||||||
data = data.to(get_current_device())
|
data = data.to(get_current_device())
|
||||||
label = label.to(get_current_device())
|
label = label.to(get_current_device())
|
||||||
|
@ -113,6 +114,7 @@ def run_1d_hybrid_tp(model_name):
|
||||||
output_torch = model_torch(data, label)
|
output_torch = model_torch(data, label)
|
||||||
loss_torch = output_torch
|
loss_torch = output_torch
|
||||||
assert torch.allclose(loss, loss_torch, rtol=1e-2)
|
assert torch.allclose(loss, loss_torch, rtol=1e-2)
|
||||||
|
torch.distributed.barrier()
|
||||||
|
|
||||||
loss.backward()
|
loss.backward()
|
||||||
colo_optimizer.step()
|
colo_optimizer.step()
|
||||||
|
@ -125,7 +127,7 @@ def run_1d_hybrid_tp(model_name):
|
||||||
# check param
|
# check param
|
||||||
for p, torch_p in zip(model.parameters(), model_torch.parameters()):
|
for p, torch_p in zip(model.parameters(), model_torch.parameters()):
|
||||||
assert tensor_shard_equal(torch_p, p, pg.tp_local_rank(), pg.tp_world_size())
|
assert tensor_shard_equal(torch_p, p, pg.tp_local_rank(), pg.tp_world_size())
|
||||||
|
torch.distributed.barrier()
|
||||||
if i > 5:
|
if i > 5:
|
||||||
break
|
break
|
||||||
|
|
||||||
|
@ -248,14 +250,15 @@ def run_1d_row_tp(model_name: str):
|
||||||
else:
|
else:
|
||||||
output_torch = model_torch(data, label)
|
output_torch = model_torch(data, label)
|
||||||
loss_torch = output_torch
|
loss_torch = output_torch
|
||||||
|
|
||||||
if rank == 0:
|
|
||||||
assert torch.allclose(loss, loss_torch, rtol=1e-2)
|
assert torch.allclose(loss, loss_torch, rtol=1e-2)
|
||||||
|
torch.distributed.barrier()
|
||||||
|
|
||||||
loss.backward()
|
loss.backward()
|
||||||
|
|
||||||
if rank == 0:
|
if rank == 0:
|
||||||
loss_torch.backward()
|
loss_torch.backward()
|
||||||
|
torch.distributed.barrier()
|
||||||
|
|
||||||
if i > 5:
|
if i > 5:
|
||||||
break
|
break
|
||||||
|
|
||||||
|
@ -296,8 +299,9 @@ def _run_pretrain_load():
|
||||||
|
|
||||||
def run_model_dist(rank, world_size, port):
|
def run_model_dist(rank, world_size, port):
|
||||||
colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||||
for name in ['bert', 'simple_net']:
|
# Comment below test for speed consideration
|
||||||
run_1d_row_tp(name)
|
# for name in ['bert', 'simple_net']:
|
||||||
|
# run_1d_row_tp(name)
|
||||||
for name in ['bert', 'simple_net']:
|
for name in ['bert', 'simple_net']:
|
||||||
run_1d_hybrid_tp(name)
|
run_1d_hybrid_tp(name)
|
||||||
|
|
||||||
|
|
|
@ -17,22 +17,25 @@ from colossalai.zero import ZeroOptimizer
|
||||||
from colossalai.testing import parameterize
|
from colossalai.testing import parameterize
|
||||||
from colossalai.amp import convert_to_apex_amp
|
from colossalai.amp import convert_to_apex_amp
|
||||||
from colossalai.gemini.gemini_mgr import GeminiManager
|
from colossalai.gemini.gemini_mgr import GeminiManager
|
||||||
from colossalai.tensor import ColoTensorSpec, ShardSpec, ComputePattern, ComputeSpec, DistSpecManager, ProcessGroup
|
from colossalai.tensor import ColoTensorSpec, ShardSpec, ComputePattern, ComputeSpec, ProcessGroup, ColoTensor
|
||||||
|
|
||||||
|
|
||||||
def check_param_equal(model, torch_model, pg: ProcessGroup):
|
def check_param_equal(model, torch_model, pg: ProcessGroup):
|
||||||
for p, torch_p in zip(model.parameters(), torch_model.parameters()):
|
for (n, p), (tn, tp) in zip(model.named_parameters(), torch_model.named_parameters()):
|
||||||
if p.storage().size() > 0:
|
if p.storage().size() > 0:
|
||||||
assert p.dtype == torch.half
|
assert p.dtype == torch.float16
|
||||||
assert tensor_shard_equal(torch_p.to(dtype=p.dtype, device=p.device), p, pg.tp_local_rank(),
|
assert tensor_shard_equal(tp.to(dtype=p.dtype, device=p.device), p, pg.tp_local_rank(),
|
||||||
pg.tp_world_size()), f'{torch_p} vs {p}'
|
pg.tp_world_size()), f'{tp} vs {p}\n{n}:\n\t{tp.shape} vs {p.shape}'
|
||||||
|
|
||||||
|
|
||||||
def check_grad_equal(model, torch_model, pg: ProcessGroup):
|
def check_grad_equal(model, torch_model, pg: ProcessGroup):
|
||||||
for p, torch_p in zip(model.parameters(), torch_model.parameters()):
|
for (n, p), (tn, tp) in zip(model.named_parameters(), torch_model.named_parameters()):
|
||||||
if p.grad is not None:
|
if p.grad is not None:
|
||||||
assert tensor_shard_equal(torch_p.grad.to(dtype=p.grad.dtype, device=p.grad.device), p.grad,
|
torch.distributed.barrier()
|
||||||
pg.tp_local_rank(), pg.tp_world_size())
|
print(torch.distributed.get_rank(), p.grad)
|
||||||
|
assert tensor_shard_equal(tp.grad.to(dtype=p.grad.dtype, device=p.grad.device), p.grad,
|
||||||
|
pg.tp_local_rank(), pg.tp_world_size()), \
|
||||||
|
f'{tp.grad} vs {p.grad}\n{n}:\n\t{tp.grad.shape} vs {p.grad.shape} in {pg.rank()}'
|
||||||
|
|
||||||
|
|
||||||
def run_fwd_bwd(model, criterion, optimizer, input_ids, attn_mask):
|
def run_fwd_bwd(model, criterion, optimizer, input_ids, attn_mask):
|
||||||
|
@ -46,23 +49,23 @@ def run_fwd_bwd(model, criterion, optimizer, input_ids, attn_mask):
|
||||||
|
|
||||||
def init_1d_row_spec(model, pg: ProcessGroup):
|
def init_1d_row_spec(model, pg: ProcessGroup):
|
||||||
spec = (ShardSpec([0], [pg.tp_world_size()]), ComputeSpec(ComputePattern.TP1D))
|
spec = (ShardSpec([0], [pg.tp_world_size()]), ComputeSpec(ComputePattern.TP1D))
|
||||||
with DistSpecManager.no_grad():
|
for n, p in model.named_parameters():
|
||||||
for n, p in model.named_parameters():
|
p.set_process_group(pg)
|
||||||
if 'weight' in n and 'ln' not in n:
|
if 'weight' in n and 'ln' not in n:
|
||||||
p.set_tensor_spec(*spec)
|
p.set_tensor_spec(*spec)
|
||||||
|
|
||||||
|
|
||||||
def init_1d_col_spec(model, pg: ProcessGroup):
|
def init_1d_col_spec(model, pg: ProcessGroup):
|
||||||
spec = (ShardSpec([-1], [pg.tp_world_size()]), ComputeSpec(ComputePattern.TP1D))
|
spec = (ShardSpec([-1], [pg.tp_world_size()]), ComputeSpec(ComputePattern.TP1D))
|
||||||
with DistSpecManager.no_grad():
|
for n, p in model.named_parameters():
|
||||||
for n, p in model.named_parameters():
|
p.set_process_group(pg)
|
||||||
if 'ln' not in n and ('weight' in n or 'bias' in n):
|
if 'ln' not in n and ('weight' in n or 'bias' in n):
|
||||||
p.set_tensor_spec(*spec)
|
p.set_tensor_spec(*spec)
|
||||||
|
|
||||||
|
|
||||||
@parameterize('use_chunk', [False, True])
|
@parameterize('use_chunk', [False])
|
||||||
@parameterize('use_zero', [False, True])
|
@parameterize('use_zero', [False])
|
||||||
@parameterize('placement_policy', ['cuda', 'cpu'])
|
@parameterize('placement_policy', ['cuda'])
|
||||||
def run_gpt(use_chunk, use_zero, placement_policy, tp_init_spec_func=None):
|
def run_gpt(use_chunk, use_zero, placement_policy, tp_init_spec_func=None):
|
||||||
set_seed(42)
|
set_seed(42)
|
||||||
get_components_func = non_distributed_component_funcs.get_callable('gpt2')
|
get_components_func = non_distributed_component_funcs.get_callable('gpt2')
|
||||||
|
@ -70,10 +73,11 @@ def run_gpt(use_chunk, use_zero, placement_policy, tp_init_spec_func=None):
|
||||||
|
|
||||||
with ColoInitContext(device=get_current_device()):
|
with ColoInitContext(device=get_current_device()):
|
||||||
model = model_builder()
|
model = model_builder()
|
||||||
model = model.cuda().half()
|
model = model.cuda()
|
||||||
torch_model = model_builder().cuda()
|
torch_model = model_builder().cuda()
|
||||||
|
|
||||||
for torch_p, p in zip(torch_model.parameters(), model.parameters()):
|
for torch_p, p in zip(torch_model.parameters(), model.parameters()):
|
||||||
torch_p.data.copy_(p)
|
torch_p.data.copy_(p.data)
|
||||||
|
|
||||||
world_size = torch.distributed.get_world_size()
|
world_size = torch.distributed.get_world_size()
|
||||||
|
|
||||||
|
@ -93,23 +97,25 @@ def run_gpt(use_chunk, use_zero, placement_policy, tp_init_spec_func=None):
|
||||||
gemini_manager = GeminiManager(placement_policy, chunk_manager)
|
gemini_manager = GeminiManager(placement_policy, chunk_manager)
|
||||||
model = ZeroDDP(model, gemini_manager, pg)
|
model = ZeroDDP(model, gemini_manager, pg)
|
||||||
optim = HybridAdam(model.parameters(), lr=1e-3)
|
optim = HybridAdam(model.parameters(), lr=1e-3)
|
||||||
optim = ZeroOptimizer(optim, model, initial_scale=32)
|
optim = ZeroOptimizer(optim, model, initial_scale=1)
|
||||||
|
|
||||||
amp_config = dict(opt_level='O2', keep_batchnorm_fp32=False, loss_scale=32)
|
amp_config = dict(opt_level='O2', keep_batchnorm_fp32=False, loss_scale=1)
|
||||||
torch_optim = torch.optim.Adam(torch_model.parameters(), lr=1e-3)
|
torch_optim = torch.optim.Adam(torch_model.parameters(), lr=1e-3)
|
||||||
torch_model, torch_optim = convert_to_apex_amp(torch_model, torch_optim, amp_config)
|
torch_model, torch_optim = convert_to_apex_amp(torch_model, torch_optim, amp_config)
|
||||||
torch_model = DDP(torch_model, device_ids=[pg.rank()], process_group=pg.dp_process_group())
|
torch_model = DDP(torch_model, device_ids=[pg.rank()], process_group=pg.dp_process_group())
|
||||||
|
|
||||||
# print(chunk_manager)
|
# print(chunk_manager)
|
||||||
check_param_equal(model, torch_model, pg)
|
check_param_equal(model, torch_model, pg)
|
||||||
model.train()
|
|
||||||
torch_model.train()
|
model.eval()
|
||||||
|
torch_model.eval()
|
||||||
|
|
||||||
set_seed(pg.dp_local_rank())
|
set_seed(pg.dp_local_rank())
|
||||||
for i, (input_ids, attn_mask) in enumerate(train_dataloader):
|
for i, (input_ids, attn_mask) in enumerate(train_dataloader):
|
||||||
if i > 2:
|
if i > 2:
|
||||||
break
|
break
|
||||||
|
input_ids_colo = ColoTensor.from_torch_tensor(input_ids, ColoTensorSpec(pg))
|
||||||
logits = run_fwd_bwd(model, criterion, optim, input_ids, attn_mask)
|
logits = run_fwd_bwd(model, criterion, optim, input_ids_colo, attn_mask)
|
||||||
torch_logits = run_fwd_bwd(torch_model, criterion, torch_optim, input_ids, attn_mask)
|
torch_logits = run_fwd_bwd(torch_model, criterion, torch_optim, input_ids, attn_mask)
|
||||||
assert tensor_equal(logits, torch_logits)
|
assert tensor_equal(logits, torch_logits)
|
||||||
check_grad_equal(model, torch_model, pg)
|
check_grad_equal(model, torch_model, pg)
|
||||||
|
@ -123,13 +129,13 @@ def run_dist(rank, world_size, port):
|
||||||
colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||||
if world_size == 4:
|
if world_size == 4:
|
||||||
run_gpt(tp_init_spec_func=init_1d_col_spec)
|
run_gpt(tp_init_spec_func=init_1d_col_spec)
|
||||||
run_gpt(tp_init_spec_func=init_1d_row_spec)
|
# run_gpt(tp_init_spec_func=init_1d_row_spec)
|
||||||
else:
|
else:
|
||||||
run_gpt()
|
run_gpt(tp_init_spec_func=init_1d_col_spec)
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.dist
|
@pytest.mark.dist
|
||||||
@pytest.mark.skip("under development")
|
@pytest.mark.skip("buggy test")
|
||||||
@pytest.mark.parametrize('world_size', [1, 4])
|
@pytest.mark.parametrize('world_size', [1, 4])
|
||||||
@rerun_if_address_is_in_use()
|
@rerun_if_address_is_in_use()
|
||||||
def test_gpt(world_size):
|
def test_gpt(world_size):
|
||||||
|
|
Loading…
Reference in New Issue