|
|
|
@ -17,22 +17,25 @@ from colossalai.zero import ZeroOptimizer
|
|
|
|
|
from colossalai.testing import parameterize |
|
|
|
|
from colossalai.amp import convert_to_apex_amp |
|
|
|
|
from colossalai.gemini.gemini_mgr import GeminiManager |
|
|
|
|
from colossalai.tensor import ColoTensorSpec, ShardSpec, ComputePattern, ComputeSpec, DistSpecManager, ProcessGroup |
|
|
|
|
from colossalai.tensor import ColoTensorSpec, ShardSpec, ComputePattern, ComputeSpec, ProcessGroup, ColoTensor |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def check_param_equal(model, torch_model, pg: ProcessGroup): |
|
|
|
|
for p, torch_p in zip(model.parameters(), torch_model.parameters()): |
|
|
|
|
for (n, p), (tn, tp) in zip(model.named_parameters(), torch_model.named_parameters()): |
|
|
|
|
if p.storage().size() > 0: |
|
|
|
|
assert p.dtype == torch.half |
|
|
|
|
assert tensor_shard_equal(torch_p.to(dtype=p.dtype, device=p.device), p, pg.tp_local_rank(), |
|
|
|
|
pg.tp_world_size()), f'{torch_p} vs {p}' |
|
|
|
|
assert p.dtype == torch.float16 |
|
|
|
|
assert tensor_shard_equal(tp.to(dtype=p.dtype, device=p.device), p, pg.tp_local_rank(), |
|
|
|
|
pg.tp_world_size()), f'{tp} vs {p}\n{n}:\n\t{tp.shape} vs {p.shape}' |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def check_grad_equal(model, torch_model, pg: ProcessGroup): |
|
|
|
|
for p, torch_p in zip(model.parameters(), torch_model.parameters()): |
|
|
|
|
for (n, p), (tn, tp) in zip(model.named_parameters(), torch_model.named_parameters()): |
|
|
|
|
if p.grad is not None: |
|
|
|
|
assert tensor_shard_equal(torch_p.grad.to(dtype=p.grad.dtype, device=p.grad.device), p.grad, |
|
|
|
|
pg.tp_local_rank(), pg.tp_world_size()) |
|
|
|
|
torch.distributed.barrier() |
|
|
|
|
print(torch.distributed.get_rank(), p.grad) |
|
|
|
|
assert tensor_shard_equal(tp.grad.to(dtype=p.grad.dtype, device=p.grad.device), p.grad, |
|
|
|
|
pg.tp_local_rank(), pg.tp_world_size()), \ |
|
|
|
|
f'{tp.grad} vs {p.grad}\n{n}:\n\t{tp.grad.shape} vs {p.grad.shape} in {pg.rank()}' |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def run_fwd_bwd(model, criterion, optimizer, input_ids, attn_mask): |
|
|
|
@ -46,23 +49,23 @@ def run_fwd_bwd(model, criterion, optimizer, input_ids, attn_mask):
|
|
|
|
|
|
|
|
|
|
def init_1d_row_spec(model, pg: ProcessGroup): |
|
|
|
|
spec = (ShardSpec([0], [pg.tp_world_size()]), ComputeSpec(ComputePattern.TP1D)) |
|
|
|
|
with DistSpecManager.no_grad(): |
|
|
|
|
for n, p in model.named_parameters(): |
|
|
|
|
if 'weight' in n and 'ln' not in n: |
|
|
|
|
p.set_tensor_spec(*spec) |
|
|
|
|
for n, p in model.named_parameters(): |
|
|
|
|
p.set_process_group(pg) |
|
|
|
|
if 'weight' in n and 'ln' not in n: |
|
|
|
|
p.set_tensor_spec(*spec) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def init_1d_col_spec(model, pg: ProcessGroup): |
|
|
|
|
spec = (ShardSpec([-1], [pg.tp_world_size()]), ComputeSpec(ComputePattern.TP1D)) |
|
|
|
|
with DistSpecManager.no_grad(): |
|
|
|
|
for n, p in model.named_parameters(): |
|
|
|
|
if 'ln' not in n and ('weight' in n or 'bias' in n): |
|
|
|
|
p.set_tensor_spec(*spec) |
|
|
|
|
for n, p in model.named_parameters(): |
|
|
|
|
p.set_process_group(pg) |
|
|
|
|
if 'ln' not in n and ('weight' in n or 'bias' in n): |
|
|
|
|
p.set_tensor_spec(*spec) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@parameterize('use_chunk', [False, True]) |
|
|
|
|
@parameterize('use_zero', [False, True]) |
|
|
|
|
@parameterize('placement_policy', ['cuda', 'cpu']) |
|
|
|
|
@parameterize('use_chunk', [False]) |
|
|
|
|
@parameterize('use_zero', [False]) |
|
|
|
|
@parameterize('placement_policy', ['cuda']) |
|
|
|
|
def run_gpt(use_chunk, use_zero, placement_policy, tp_init_spec_func=None): |
|
|
|
|
set_seed(42) |
|
|
|
|
get_components_func = non_distributed_component_funcs.get_callable('gpt2') |
|
|
|
@ -70,10 +73,11 @@ def run_gpt(use_chunk, use_zero, placement_policy, tp_init_spec_func=None):
|
|
|
|
|
|
|
|
|
|
with ColoInitContext(device=get_current_device()): |
|
|
|
|
model = model_builder() |
|
|
|
|
model = model.cuda().half() |
|
|
|
|
model = model.cuda() |
|
|
|
|
torch_model = model_builder().cuda() |
|
|
|
|
|
|
|
|
|
for torch_p, p in zip(torch_model.parameters(), model.parameters()): |
|
|
|
|
torch_p.data.copy_(p) |
|
|
|
|
torch_p.data.copy_(p.data) |
|
|
|
|
|
|
|
|
|
world_size = torch.distributed.get_world_size() |
|
|
|
|
|
|
|
|
@ -93,23 +97,25 @@ def run_gpt(use_chunk, use_zero, placement_policy, tp_init_spec_func=None):
|
|
|
|
|
gemini_manager = GeminiManager(placement_policy, chunk_manager) |
|
|
|
|
model = ZeroDDP(model, gemini_manager, pg) |
|
|
|
|
optim = HybridAdam(model.parameters(), lr=1e-3) |
|
|
|
|
optim = ZeroOptimizer(optim, model, initial_scale=32) |
|
|
|
|
optim = ZeroOptimizer(optim, model, initial_scale=1) |
|
|
|
|
|
|
|
|
|
amp_config = dict(opt_level='O2', keep_batchnorm_fp32=False, loss_scale=32) |
|
|
|
|
amp_config = dict(opt_level='O2', keep_batchnorm_fp32=False, loss_scale=1) |
|
|
|
|
torch_optim = torch.optim.Adam(torch_model.parameters(), lr=1e-3) |
|
|
|
|
torch_model, torch_optim = convert_to_apex_amp(torch_model, torch_optim, amp_config) |
|
|
|
|
torch_model = DDP(torch_model, device_ids=[pg.rank()], process_group=pg.dp_process_group()) |
|
|
|
|
|
|
|
|
|
# print(chunk_manager) |
|
|
|
|
check_param_equal(model, torch_model, pg) |
|
|
|
|
model.train() |
|
|
|
|
torch_model.train() |
|
|
|
|
|
|
|
|
|
model.eval() |
|
|
|
|
torch_model.eval() |
|
|
|
|
|
|
|
|
|
set_seed(pg.dp_local_rank()) |
|
|
|
|
for i, (input_ids, attn_mask) in enumerate(train_dataloader): |
|
|
|
|
if i > 2: |
|
|
|
|
break |
|
|
|
|
|
|
|
|
|
logits = run_fwd_bwd(model, criterion, optim, input_ids, attn_mask) |
|
|
|
|
input_ids_colo = ColoTensor.from_torch_tensor(input_ids, ColoTensorSpec(pg)) |
|
|
|
|
logits = run_fwd_bwd(model, criterion, optim, input_ids_colo, attn_mask) |
|
|
|
|
torch_logits = run_fwd_bwd(torch_model, criterion, torch_optim, input_ids, attn_mask) |
|
|
|
|
assert tensor_equal(logits, torch_logits) |
|
|
|
|
check_grad_equal(model, torch_model, pg) |
|
|
|
@ -123,13 +129,13 @@ def run_dist(rank, world_size, port):
|
|
|
|
|
colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') |
|
|
|
|
if world_size == 4: |
|
|
|
|
run_gpt(tp_init_spec_func=init_1d_col_spec) |
|
|
|
|
run_gpt(tp_init_spec_func=init_1d_row_spec) |
|
|
|
|
# run_gpt(tp_init_spec_func=init_1d_row_spec) |
|
|
|
|
else: |
|
|
|
|
run_gpt() |
|
|
|
|
run_gpt(tp_init_spec_func=init_1d_col_spec) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.dist |
|
|
|
|
@pytest.mark.skip("under development") |
|
|
|
|
@pytest.mark.skip("buggy test") |
|
|
|
|
@pytest.mark.parametrize('world_size', [1, 4]) |
|
|
|
|
@rerun_if_address_is_in_use() |
|
|
|
|
def test_gpt(world_size): |
|
|
|
|