mirror of https://github.com/hpcaitech/ColossalAI
[builder] runtime adam and fused_optim builder (#2184)
parent
550f8f8905
commit
d42afd30f8
|
@ -5,9 +5,11 @@ import torch
|
||||||
import torch.distributed as dist
|
import torch.distributed as dist
|
||||||
|
|
||||||
try:
|
try:
|
||||||
import colossalai._C.fused_optim
|
from colossalai._C import fused_optim
|
||||||
except:
|
except:
|
||||||
print('Colossalai should be built with cuda extension to use the FP16 optimizer')
|
print('Colossalai should be built with cuda extension to use the FP16 optimizer')
|
||||||
|
from colossalai.kernel.op_builder.fused_optim import FusedOptimBuilder
|
||||||
|
fused_optim = FusedOptimBuilder().load()
|
||||||
|
|
||||||
from torch.distributed import ProcessGroup
|
from torch.distributed import ProcessGroup
|
||||||
from torch.optim import Optimizer
|
from torch.optim import Optimizer
|
||||||
|
@ -35,7 +37,7 @@ def _multi_tensor_copy_this_to_that(this, that, overflow_buf=None):
|
||||||
if overflow_buf:
|
if overflow_buf:
|
||||||
overflow_buf.fill_(0)
|
overflow_buf.fill_(0)
|
||||||
# Scaling with factor `1.0` is equivalent to copy.
|
# Scaling with factor `1.0` is equivalent to copy.
|
||||||
multi_tensor_applier(colossalai._C.fused_optim.multi_tensor_scale, overflow_buf, [this, that], 1.0)
|
multi_tensor_applier(fused_optim.multi_tensor_scale, overflow_buf, [this, that], 1.0)
|
||||||
else:
|
else:
|
||||||
for this_, that_ in zip(this, that):
|
for this_, that_ in zip(this, that):
|
||||||
that_.copy_(this_)
|
that_.copy_(this_)
|
||||||
|
|
|
@ -0,0 +1,4 @@
|
||||||
|
from .cpu_adam import CPUAdamBuilder
|
||||||
|
from .fused_optim import FusedOptimBuilder
|
||||||
|
|
||||||
|
__all__ = ['CPUAdamBuilder', 'FusedOptimBuilder']
|
|
@ -0,0 +1,45 @@
|
||||||
|
import os
|
||||||
|
import sys
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
|
||||||
|
class Builder(object):
|
||||||
|
|
||||||
|
def colossalai_src_path(self, code_path):
|
||||||
|
if os.path.isabs(code_path):
|
||||||
|
return code_path
|
||||||
|
else:
|
||||||
|
return os.path.join(Path(__file__).parent.parent.absolute(), code_path)
|
||||||
|
|
||||||
|
def strip_empty_entries(self, args):
|
||||||
|
'''
|
||||||
|
Drop any empty strings from the list of compile and link flags
|
||||||
|
'''
|
||||||
|
return [x for x in args if len(x) > 0]
|
||||||
|
|
||||||
|
def load(self, verbose=True):
|
||||||
|
"""
|
||||||
|
|
||||||
|
load and compile cpu_adam lib at runtime
|
||||||
|
|
||||||
|
Args:
|
||||||
|
verbose (bool, optional): show detailed info. Defaults to True.
|
||||||
|
"""
|
||||||
|
import time
|
||||||
|
|
||||||
|
from torch.utils.cpp_extension import load
|
||||||
|
start_build = time.time()
|
||||||
|
|
||||||
|
op_module = load(name=self.name,
|
||||||
|
sources=self.strip_empty_entries(self.sources),
|
||||||
|
extra_include_paths=self.strip_empty_entries(self.extra_include_paths),
|
||||||
|
extra_cflags=self.extra_cxx_flags,
|
||||||
|
extra_cuda_cflags=self.extra_cuda_flags,
|
||||||
|
extra_ldflags=[],
|
||||||
|
verbose=verbose)
|
||||||
|
|
||||||
|
build_duration = time.time() - start_build
|
||||||
|
if verbose:
|
||||||
|
print(f"Time to load {self.name} op: {build_duration} seconds")
|
||||||
|
|
||||||
|
return op_module
|
|
@ -0,0 +1,84 @@
|
||||||
|
import os
|
||||||
|
import sys
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
from .builder import Builder
|
||||||
|
|
||||||
|
|
||||||
|
class CPUAdamBuilder(Builder):
|
||||||
|
NAME = "cpu_adam"
|
||||||
|
BASE_DIR = "cuda_native"
|
||||||
|
|
||||||
|
def __init__(self):
|
||||||
|
self.name = CPUAdamBuilder.NAME
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
self.sources = [self.colossalai_src_path(path) for path in self.sources_files()]
|
||||||
|
self.extra_include_paths = [self.colossalai_src_path(path) for path in self.include_paths()]
|
||||||
|
self.extra_cxx_flags = ['-std=c++14', '-lcudart', '-lcublas', '-g', '-Wno-reorder', '-fopenmp', '-march=native']
|
||||||
|
self.extra_cuda_flags = [
|
||||||
|
'-std=c++14', '-U__CUDA_NO_HALF_OPERATORS__', '-U__CUDA_NO_HALF_CONVERSIONS__',
|
||||||
|
'-U__CUDA_NO_HALF2_OPERATORS__', '-DTHRUST_IGNORE_CUB_VERSION_CHECK'
|
||||||
|
]
|
||||||
|
self.version_dependent_macros = ['-DVERSION_GE_1_1', '-DVERSION_GE_1_3', '-DVERSION_GE_1_5']
|
||||||
|
|
||||||
|
def sources_files(self):
|
||||||
|
return [
|
||||||
|
os.path.join(CPUAdamBuilder.BASE_DIR, "csrc/cpu_adam.cpp"),
|
||||||
|
]
|
||||||
|
|
||||||
|
def include_paths(self):
|
||||||
|
import torch
|
||||||
|
from torch.utils.cpp_extension import CUDA_HOME
|
||||||
|
cuda_include = os.path.join(CUDA_HOME, "include")
|
||||||
|
return [os.path.join(CPUAdamBuilder.BASE_DIR, "includes"), cuda_include]
|
||||||
|
|
||||||
|
def colossalai_src_path(self, code_path):
|
||||||
|
if os.path.isabs(code_path):
|
||||||
|
return code_path
|
||||||
|
else:
|
||||||
|
return os.path.join(Path(__file__).parent.parent.absolute(), code_path)
|
||||||
|
|
||||||
|
def strip_empty_entries(self, args):
|
||||||
|
'''
|
||||||
|
Drop any empty strings from the list of compile and link flags
|
||||||
|
'''
|
||||||
|
return [x for x in args if len(x) > 0]
|
||||||
|
|
||||||
|
def builder(self):
|
||||||
|
from torch.utils.cpp_extension import CUDAExtension
|
||||||
|
return CUDAExtension(
|
||||||
|
name=self.name,
|
||||||
|
sources=[os.path.join('colossalai/kernel/cuda_native/csrc', path) for path in self.sources],
|
||||||
|
include_dirs=self.extra_include_paths,
|
||||||
|
extra_compile_args={
|
||||||
|
'cxx': ['-O3'] + self.version_dependent_macros + self.extra_cxx_flags,
|
||||||
|
'nvcc': ['-O3', '--use_fast_math'] + self.extra_cuda_flags
|
||||||
|
})
|
||||||
|
|
||||||
|
def load(self, verbose=True):
|
||||||
|
"""
|
||||||
|
|
||||||
|
load and compile cpu_adam lib at runtime
|
||||||
|
|
||||||
|
Args:
|
||||||
|
verbose (bool, optional): show detailed info. Defaults to True.
|
||||||
|
"""
|
||||||
|
import time
|
||||||
|
|
||||||
|
from torch.utils.cpp_extension import load
|
||||||
|
start_build = time.time()
|
||||||
|
|
||||||
|
op_module = load(name=self.name,
|
||||||
|
sources=self.strip_empty_entries(self.sources),
|
||||||
|
extra_include_paths=self.strip_empty_entries(self.extra_include_paths),
|
||||||
|
extra_cflags=self.extra_cxx_flags,
|
||||||
|
extra_cuda_cflags=self.extra_cuda_flags,
|
||||||
|
extra_ldflags=[],
|
||||||
|
verbose=verbose)
|
||||||
|
|
||||||
|
build_duration = time.time() - start_build
|
||||||
|
if verbose:
|
||||||
|
print(f"Time to load {self.name} op: {build_duration} seconds")
|
||||||
|
|
||||||
|
return op_module
|
|
@ -0,0 +1,53 @@
|
||||||
|
import os
|
||||||
|
import re
|
||||||
|
|
||||||
|
import torch
|
||||||
|
|
||||||
|
from .builder import Builder
|
||||||
|
|
||||||
|
|
||||||
|
class FusedOptimBuilder(Builder):
|
||||||
|
NAME = "fused_optim"
|
||||||
|
BASE_DIR = "cuda_native/csrc"
|
||||||
|
|
||||||
|
def __init__(self):
|
||||||
|
self.name = FusedOptimBuilder.NAME
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
self.extra_cxx_flags = []
|
||||||
|
self.extra_cuda_flags = ['-lineinfo']
|
||||||
|
for arch in torch.cuda.get_arch_list():
|
||||||
|
res = re.search(r'sm_(\d+)', arch)
|
||||||
|
if res:
|
||||||
|
arch_cap = res[1]
|
||||||
|
if int(arch_cap) >= 60:
|
||||||
|
self.extra_cuda_flags.extend(['-gencode', f'arch=compute_{arch_cap},code={arch}'])
|
||||||
|
|
||||||
|
self.sources = [self.colossalai_src_path(path) for path in self.sources_files()]
|
||||||
|
self.extra_include_paths = [self.colossalai_src_path(path) for path in self.include_paths()]
|
||||||
|
self.version_dependent_macros = ['-DVERSION_GE_1_1', '-DVERSION_GE_1_3', '-DVERSION_GE_1_5']
|
||||||
|
|
||||||
|
def sources_files(self):
|
||||||
|
return [
|
||||||
|
os.path.join(FusedOptimBuilder.BASE_DIR, fname) for fname in [
|
||||||
|
'colossal_C_frontend.cpp', 'multi_tensor_sgd_kernel.cu', 'multi_tensor_scale_kernel.cu',
|
||||||
|
'multi_tensor_adam.cu', 'multi_tensor_l2norm_kernel.cu', 'multi_tensor_lamb.cu'
|
||||||
|
]
|
||||||
|
]
|
||||||
|
|
||||||
|
def include_paths(self):
|
||||||
|
import torch
|
||||||
|
from torch.utils.cpp_extension import CUDA_HOME
|
||||||
|
cuda_include = os.path.join(CUDA_HOME, "include")
|
||||||
|
return [os.path.join(FusedOptimBuilder.BASE_DIR, "includes"), cuda_include]
|
||||||
|
|
||||||
|
def builder(self):
|
||||||
|
from torch.utils.cpp_extension import CUDAExtension
|
||||||
|
return CUDAExtension(
|
||||||
|
name=self.name,
|
||||||
|
sources=[os.path.join('colossalai/kernel/cuda_native/csrc', path) for path in self.sources],
|
||||||
|
include_dirs=self.extra_include_paths,
|
||||||
|
extra_compile_args={
|
||||||
|
'cxx': ['-O3'] + self.version_dependent_macros + self.extra_cxx_flags,
|
||||||
|
'nvcc': ['-O3', '--use_fast_math'] + self.extra_cuda_flags
|
||||||
|
})
|
|
@ -77,15 +77,15 @@ class HybridAdam(NVMeOptimizer):
|
||||||
super(HybridAdam, self).__init__(model_params, default_args, nvme_offload_fraction, nvme_offload_dir)
|
super(HybridAdam, self).__init__(model_params, default_args, nvme_offload_fraction, nvme_offload_dir)
|
||||||
self.adamw_mode = adamw_mode
|
self.adamw_mode = adamw_mode
|
||||||
try:
|
try:
|
||||||
import colossalai._C.cpu_optim
|
from colossalai._C import cpu_optim, fused_optim
|
||||||
import colossalai._C.fused_optim
|
|
||||||
except ImportError:
|
except ImportError:
|
||||||
raise ImportError('Please install colossalai from source code to use HybridAdam')
|
from colossalai.kernel.op_builder import CPUAdamBuilder, FusedOptimBuilder
|
||||||
|
fused_optim = FusedOptimBuilder().load()
|
||||||
|
cpu_optim = CPUAdamBuilder().load()
|
||||||
|
|
||||||
self.cpu_adam_op = colossalai._C.cpu_optim.CPUAdamOptimizer(lr, betas[0], betas[1], eps, weight_decay,
|
self.cpu_adam_op = cpu_optim.CPUAdamOptimizer(lr, betas[0], betas[1], eps, weight_decay, adamw_mode)
|
||||||
adamw_mode)
|
|
||||||
|
|
||||||
self.gpu_adam_op = colossalai._C.fused_optim.multi_tensor_adam
|
self.gpu_adam_op = fused_optim.multi_tensor_adam
|
||||||
self._dummy_overflow_buf = torch.cuda.IntTensor([0])
|
self._dummy_overflow_buf = torch.cuda.IntTensor([0])
|
||||||
|
|
||||||
@torch.no_grad()
|
@torch.no_grad()
|
||||||
|
|
|
@ -69,8 +69,12 @@ def test_cpu_adam(adamw, step, p_dtype, g_dtype):
|
||||||
try:
|
try:
|
||||||
import colossalai._C.cpu_optim
|
import colossalai._C.cpu_optim
|
||||||
cpu_adam_op = colossalai._C.cpu_optim.CPUAdamOptimizer(lr, beta1, beta2, eps, weight_decay, adamw)
|
cpu_adam_op = colossalai._C.cpu_optim.CPUAdamOptimizer(lr, beta1, beta2, eps, weight_decay, adamw)
|
||||||
|
print("use prebuilt CPUAdamOptimizer")
|
||||||
except:
|
except:
|
||||||
raise ImportError("Import cpu adam error, please install colossal from source code")
|
from colossalai.kernel.op_builder.cpu_adam import CPUAdamBuilder
|
||||||
|
lib = CPUAdamBuilder().load()
|
||||||
|
cpu_adam_op = lib.CPUAdamOptimizer(lr, beta1, beta2, eps, weight_decay, adamw)
|
||||||
|
print("build CPUAdamOptimizer at runtime")
|
||||||
|
|
||||||
cpu_adam_op.step(
|
cpu_adam_op.step(
|
||||||
step,
|
step,
|
||||||
|
@ -115,3 +119,7 @@ def test_cpu_adam(adamw, step, p_dtype, g_dtype):
|
||||||
assertTrue(max_exp_avg_diff < threshold, f"max_exp_avg_diff {max_exp_avg_diff}")
|
assertTrue(max_exp_avg_diff < threshold, f"max_exp_avg_diff {max_exp_avg_diff}")
|
||||||
max_exp_avg_sq_diff = torch.max(torch.abs(exp_avg_sq_copy - exp_avg_sq))
|
max_exp_avg_sq_diff = torch.max(torch.abs(exp_avg_sq_copy - exp_avg_sq))
|
||||||
assertTrue(max_exp_avg_sq_diff < threshold, f"max_exp_avg_sq_diff {max_exp_avg_sq_diff}")
|
assertTrue(max_exp_avg_sq_diff < threshold, f"max_exp_avg_sq_diff {max_exp_avg_sq_diff}")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
test_cpu_adam()
|
||||||
|
|
Loading…
Reference in New Issue