[shardformer] test all optimizations (#4399)

[shardformer] test all optimizations

[shardformer] test all optimizations

[shardformer] test all optimizations
pull/4445/head
flybird1111 2023-08-10 13:59:30 +08:00 committed by Hongxin Liu
parent 7a3dfd0c64
commit d2cd48e0be
4 changed files with 59 additions and 29 deletions

View File

@ -148,7 +148,10 @@ class HybridParallelPlugin(PipelinePluginBase):
precision: str = 'fp16',
zero_stage: int = 0,
cpu_offload: bool = False,
enable_all_optimization: bool = False,
enable_fused_normalization: bool = False,
enable_flash_attention: bool = False,
enable_jit_fused: bool = False,
num_microbatches: Optional[int] = None,
initial_scale: float = 2**16,
min_scale: float = 1,
@ -171,7 +174,10 @@ class HybridParallelPlugin(PipelinePluginBase):
self.precision = precision
self.zero_stage = zero_stage
self.cpu_offload = cpu_offload
self.enable_all_optimization = enable_all_optimization
self.enable_fused_normalization = enable_fused_normalization
self.enable_flash_attention = enable_flash_attention
self.enable_jit_fused = enable_jit_fused
self.pg_mesh = ProcessGroupMesh(self.dp_size, self.pp_size, self.tp_size)
self.stage_manager = None
self.schedule = None
@ -186,7 +192,10 @@ class HybridParallelPlugin(PipelinePluginBase):
self.shard_config = ShardConfig(tensor_parallel_process_group=self.tp_group,
pipeline_stage_manager=self.stage_manager,
enable_tensor_parallelism=self.tp_size > 1,
enable_fused_normalization=self.enable_fused_normalization)
enable_all_optimization=self.enable_all_optimization,
enable_fused_normalization=self.enable_fused_normalization,
enable_flash_attention=self.enable_flash_attention,
enable_jit_fused=self.enable_jit_fused)
self.amp_config = dict(
initial_scale=initial_scale,
growth_factor=growth_factor,

View File

@ -19,4 +19,4 @@ ninja
flash_attn>=2.0
datasets
ninja
flash-attn
flash-attn>=2.0

View File

@ -1,6 +1,5 @@
import copy
from contextlib import nullcontext
from typing import Optional
from typing import Any, Callable, Dict, List, Optional
import torch
@ -16,8 +15,8 @@ from colossalai.booster.plugin import HybridParallelPlugin
from colossalai.lazy import LazyInitContext
from colossalai.pipeline.stage_manager import PipelineStageManager
from colossalai.shardformer import ShardConfig, ShardFormer
from colossalai.shardformer.policies.auto_policy import Policy
from colossalai.shardformer._utils import getattr_
from colossalai.shardformer.policies.auto_policy import Policy
from colossalai.tensor.d_tensor.api import is_customized_distributed_tensor, is_distributed_tensor
@ -156,10 +155,12 @@ def run_forward_backward_with_hybrid_plugin(org_model: Module, sharded_model: Mo
else:
data = {k: v.cuda() for k, v in data.items()}
sharded_output = sharded_model(**data)
sharded_loss = criterion(sharded_output)
sharded_loss.backward()
sharded_optimizer.backward(sharded_loss)
org_model.train()
data = {k: v.cuda() for k, v in data.items()}
org_output = org_model(**data)
org_loss = criterion(org_output)
org_loss.backward()
@ -181,12 +182,12 @@ def check_output_hidden_state(org_output: Tensor,
if stage_manager and stage_manager.is_last_stage():
sharded_hidden_state = torch.cat([output.last_hidden_state for output in sharded_output['outputs']], dim=0)
assert torch.allclose(org_hidden_state, sharded_hidden_state, atol=atol, rtol=rtol), \
assert torch.allclose(org_hidden_state.float(), sharded_hidden_state.float(), atol=atol, rtol=rtol), \
f"shard model's output hidden state is not equal to origin model's last hidden state\n{org_hidden_state}\n{sharded_hidden_state}"
def check_loss(org_loss: Tensor, sharded_loss: Tensor, atol: float = 1e-5, rtol: float = 1e-3):
assert torch.allclose(org_loss, sharded_loss, atol=atol, rtol=rtol), \
assert torch.allclose(org_loss.float(), sharded_loss.float(), atol=atol, rtol=rtol), \
f"shard model loss is not equal to origin model loss\n{org_loss}\n{sharded_loss}"
@ -213,7 +214,7 @@ def check_weight(org_model: Module,
if verbose and dist.get_rank() == 0:
print(f"'{suffix}' weight: {org_weight}, {sharded_weight}")
assert torch.allclose(org_weight, sharded_weight, atol=atol, rtol=rtol), \
assert torch.allclose(org_weight.float(), sharded_weight.float(), atol=atol, rtol=rtol), \
f"shard model weight is not equal to origin model weight\n{org_weight}\n{sharded_weight}"
@ -244,6 +245,7 @@ def check_grad(org_model: Module,
if verbose and dist.get_rank() == 0:
print(f"'{suffix}' grad: {org_grad}, {shard_grad}")
assert torch.allclose(
org_grad, shard_grad, rtol=rtol, atol=atol
org_grad.float(), shard_grad.float(), rtol=rtol, atol=atol
), f"error attribute '{suffix}', orgin model grad is not equal to shard model grad\n{org_grad}\n{shard_grad}"

View File

@ -3,6 +3,7 @@ import torch
from torch import distributed as dist
import colossalai
from colossalai.booster.plugin.hybrid_parallel_plugin import HybridParallelModule
from colossalai.logging import disable_existing_loggers
from colossalai.tensor.d_tensor.api import clear_layout_converter
from colossalai.testing import clear_cache_before_run, parameterize, rerun_if_address_is_in_use, spawn
@ -38,33 +39,49 @@ def check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn,
# check last hidden state & loss
if stage_manager is None or stage_manager.is_last_stage():
if test_config['precision'] == 'fp32':
atol, rtol = 1e-5, 1e-3
else:
atol, rtol = 5e-3, 5e-3
if org_model.__class__.__name__ == 'GPT2Model':
check_output_hidden_state(org_output, sharded_output, stage_manager, atol=1e-5, rtol=1e-3)
check_output_hidden_state(org_output, sharded_output, stage_manager, atol=atol, rtol=rtol)
check_loss(org_loss, sharded_loss, atol=1e-5, rtol=1e-3)
# check loss
check_loss(org_loss, sharded_loss, atol=atol, rtol=rtol)
def unwrap(module):
if isinstance(module, HybridParallelModule):
module = module.unwrap()
if module.__class__.__name__ == 'GPT2Model':
return module
return module.transformer
# unwrap model
if org_model.__class__.__name__ == 'GPT2Model':
gpt2 = org_model
sharded_gpt2 = sharded_model.unwrap()
else:
gpt2 = org_model.transformer
sharded_gpt2 = sharded_model.unwrap().transformer
gpt2 = unwrap(org_model)
sharded_gpt2 = unwrap(sharded_model)
col_layer_for_check = ['h[0].mlp.c_fc']
row_layer_for_check = ['wte', 'h[0].mlp.c_proj']
# check grad
if test_config['precision'] == 'fp32':
atol, rtol = 1e-4, 1e-3
else:
atol, rtol = 5e-3, 5e-3
if stage_manager is None or stage_manager.is_first_stage():
check_grad(gpt2, sharded_gpt2, col_layer_for_check, tp_group, atol=1e-4, rtol=1e-3, dim=1, verbose=False)
check_grad(gpt2, sharded_gpt2, row_layer_for_check, tp_group, atol=1e-4, rtol=1e-3, dim=0, verbose=False)
check_grad(gpt2, sharded_gpt2, col_layer_for_check, tp_group, atol=atol, rtol=rtol, dim=1, verbose=False)
check_grad(gpt2, sharded_gpt2, row_layer_for_check, tp_group, atol=atol, rtol=rtol, dim=0, verbose=False)
# check weights after optimizer.step()
org_optimizer.step()
sharded_optimizer.step()
if test_config['precision'] == 'fp32':
atol, rtol = 5e-3, 1e-3
else:
atol, rtol = 5e-3, 5e-3
if stage_manager is None or stage_manager.is_first_stage():
check_weight(gpt2, sharded_gpt2, col_layer_for_check, tp_group, atol=5e-3, rtol=1e-3, dim=1, verbose=False)
check_weight(gpt2, sharded_gpt2, col_layer_for_check, tp_group, atol=atol, rtol=rtol, dim=1, verbose=False)
torch.cuda.empty_cache()
@ -73,29 +90,31 @@ def check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn,
'tp_size': 2,
'pp_size': 2,
'num_microbatches': 4,
'enable_fused_normalization': True,
'use_lazy_init': True
'enable_all_optimization': True,
'use_lazy_init': True,
'precision': 'fp32',
}, {
'tp_size': 1,
'pp_size': 2,
'num_microbatches': 4,
'use_lazy_init': False
'enable_all_optimization': True,
'use_lazy_init': False,
'precision': 'fp16',
'initial_scale': 1,
}, {
'tp_size': 4,
'pp_size': 1,
'enable_fused_normalization': True,
'use_lazy_init': False
'enable_all_optimization': True,
'use_lazy_init': False,
'precision': 'fp32',
}])
@clear_cache_before_run()
def run_gpt2_test(test_config):
# TODO: add test_config for TP+DP after supporting & debugging it
# {'tp_size': 2, 'pp_size': 1, 'enable_fused_normalization': True}
# TODO: add test_config for flash attention & jit operator after supporting
# TODO: check and debug TP+AMP
sub_model_zoo = model_zoo.get_sub_registry('transformers_gpt')
test_config['precision'] = 'float' # Do not use fp16/bf16 in testing
for name, (model_fn, data_gen_fn, output_transform_fn, loss_fn, _) in sub_model_zoo.items():
check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn, test_config)