Browse Source

[infer] fix test bug (#4838)

* fix test bug

* delete useless code

* fix typo
pull/4856/head
Xu Kai 1 year ago committed by GitHub
parent
commit
d1fcc0fa4d
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
  1. 2
      colossalai/shardformer/modeling/chatglm2_6b/modeling_chatglm.py
  2. 1
      examples/inference/bench_llama.py
  3. 29
      tests/test_infer/test_bloom_infer.py
  4. 41
      tests/test_infer/test_chatglm2_infer.py
  5. 30
      tests/test_infer/test_llama_infer.py
  6. 4
      tests/test_infer_ops/triton/test_llama2_token_attn.py

2
colossalai/shardformer/modeling/chatglm2_6b/modeling_chatglm.py

@ -873,7 +873,7 @@ class ChatGLMModel(ChatGLMPreTrainedModel):
self.rotary_pos_emb = RotaryEmbedding(
rotary_dim // 2,
original_impl=config.original_rope,
# original_impl=config.original_rope, # config has no attribute original_rope
device=device,
dtype=config.torch_dtype,
)

1
examples/inference/bench_llama.py

@ -43,7 +43,6 @@ def run_llama_test(args):
tokenizer.pad_token_id = tokenizer.unk_token_id
model = LlamaForCausalLM.from_pretrained(llama_model_path, pad_token_id=tokenizer.eos_token_id)
model = model.half()
model_config = model.config
shard_config = ShardConfig(enable_tensor_parallelism=True if args.tp_size > 1 else False, inference_only=True)

29
tests/test_infer/test_bloom_infer.py

@ -1,13 +1,14 @@
import pytest
import torch
from packaging import version
from transformers import BloomForCausalLM
from transformers.models.bloom.configuration_bloom import BloomConfig
import colossalai
from colossalai.inference.tensor_parallel import TPInferEngine
from colossalai.logging import disable_existing_loggers
from colossalai.shardformer import ShardConfig
from colossalai.testing import clear_cache_before_run, parameterize, rerun_if_address_is_in_use, spawn
from tests.kit.model_zoo import model_zoo
TP_SIZE = 2
MAX_BATCH_SIZE = 4
@ -26,21 +27,23 @@ CUDA_SUPPORT = version.parse(torch.version.cuda) > version.parse("11.5")
],
)
def run(test_config):
sub_model_zoo = model_zoo.get_sub_registry("transformers_bloom_for_causal_lm")
for name, (model_fn, data_gen_fn, _, _, _) in sub_model_zoo.items():
orig_model = model_fn()
orig_model = orig_model.half()
data = data_gen_fn()
bloom_config = BloomConfig(num_hidden_layers=2, bos_token_id=0, eos_token_id=1, vocab_size=1200, hidden_size=1024)
model = BloomForCausalLM(bloom_config)
model = model.half()
shard_config = ShardConfig(
enable_tensor_parallelism=True if test_config["tp_size"] > 1 else False, inference_only=True
)
infer_engine = TPInferEngine(orig_model, shard_config, MAX_BATCH_SIZE, MAX_INPUT_LEN, MAX_OUTPUT_LEN)
shard_config = ShardConfig(
enable_tensor_parallelism=True if test_config["tp_size"] > 1 else False, inference_only=True
)
infer_engine = TPInferEngine(model, shard_config, MAX_BATCH_SIZE, MAX_INPUT_LEN, MAX_OUTPUT_LEN)
generate_kwargs = dict(max_new_tokens=MAX_OUTPUT_LEN, do_sample=False)
generate_kwargs = dict(do_sample=False)
outputs = infer_engine.generate(data, **generate_kwargs)
input_tokens = {
"input_ids": torch.randint(1, 1000, (MAX_BATCH_SIZE, MAX_INPUT_LEN), device="cuda"),
"attention_mask": torch.ones((MAX_BATCH_SIZE, MAX_INPUT_LEN), device="cuda"),
}
outputs = infer_engine.generate(input_tokens, **generate_kwargs)
assert outputs is not None
assert outputs is not None
def check_bloom(rank, world_size, port):

41
tests/test_infer/test_chatglm2_infer.py

@ -2,17 +2,15 @@ import os
import pytest
import torch
import torch.distributed as dist
from packaging import version
from transformers import AutoTokenizer
import colossalai
from colossalai.inference.tensor_parallel.engine import TPInferEngine
from colossalai.logging import disable_existing_loggers
from colossalai.shardformer import ShardConfig
from colossalai.shardformer.modeling.chatglm2_6b.configuration_chatglm import ChatGLMConfig
from colossalai.shardformer.modeling.chatglm2_6b.modeling_chatglm import ChatGLMForConditionalGeneration
from colossalai.testing import clear_cache_before_run, parameterize, rerun_if_address_is_in_use, spawn
from tests.kit.model_zoo.transformers.chatglm2 import infer_config
os.environ["TRANSFORMERS_NO_ADVISORY_WARNINGS"] = "true"
TPSIZE = 1
@ -31,28 +29,31 @@ CUDA_SUPPORT = version.parse(torch.version.cuda) > version.parse("11.5")
],
)
def run_chatglm2_test(test_config):
tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm2-6b", trust_remote_code=True)
# pad_token_id = 0
model_fn = lambda: ChatGLMForConditionalGeneration(infer_config, empty_init=False)
orig_model = model_fn()
orig_model = orig_model.half()
text = ["how is the weather today?"]
input_ids = tokenizer.batch_encode_plus(text, return_tensors="pt", padding=True)
chatglm_config = ChatGLMConfig(
num_layers=2,
vocab_size=1200,
use_cache=True,
multi_query_attention=True,
multi_query_group_num=2,
num_attention_heads=8,
hidden_size=1024,
)
model = ChatGLMForConditionalGeneration(chatglm_config)
model = model.half()
shard_config = ShardConfig(
enable_tensor_parallelism=True if test_config["tp_size"] > 1 else False, inference_only=True
)
infer_engine = TPInferEngine(orig_model, shard_config, BATCH_SIZE, MAX_INPUT_LEN, MAX_OUTPUT_LEN)
infer_engine = TPInferEngine(model, shard_config, BATCH_SIZE, MAX_INPUT_LEN, MAX_OUTPUT_LEN)
generate_kwargs = dict(max_new_tokens=MAX_OUTPUT_LEN, do_sample=False)
outputs = infer_engine.generate(input_ids, **generate_kwargs)
assert outputs is not None
# print("outputs.shape: ", outputs[0].shape)
# print("outputs: ", outputs[0])
if not dist.is_initialized() or dist.get_rank() == 0:
for o in outputs:
output_text = tokenizer.decode(o)
print(output_text)
input_tokens = {
"input_ids": torch.randint(1, 1000, (BATCH_SIZE, MAX_INPUT_LEN), device="cuda"),
"attention_mask": torch.ones((BATCH_SIZE, MAX_INPUT_LEN), device="cuda"),
}
outputs = infer_engine.generate(input_tokens, **generate_kwargs)
assert outputs is not None
def check_chatglm2(rank, world_size, port):

30
tests/test_infer/test_llama_infer.py

@ -3,13 +3,14 @@ import os
import pytest
import torch
from packaging import version
from transformers import LlamaForCausalLM
from transformers.models.llama.configuration_llama import LlamaConfig
import colossalai
from colossalai.inference.tensor_parallel.engine import TPInferEngine
from colossalai.logging import disable_existing_loggers
from colossalai.shardformer import ShardConfig
from colossalai.testing import clear_cache_before_run, parameterize, rerun_if_address_is_in_use, spawn
from tests.kit.model_zoo import model_zoo
os.environ["TRANSFORMERS_NO_ADVISORY_WARNINGS"] = "true"
TPSIZE = 2
@ -29,21 +30,24 @@ CUDA_SUPPORT = version.parse(torch.version.cuda) > version.parse("11.5")
],
)
def run_llama_test(test_config):
sub_model_zoo = model_zoo.get_sub_registry("transformers_llama_for_casual_lm")
for name, (model_fn, data_gen_fn, _, _, _) in sub_model_zoo.items():
orig_model = model_fn()
orig_model = orig_model.half()
data = data_gen_fn()
llama_config = LlamaConfig(num_hidden_layers=2, bos_token_id=0, eos_token_id=1, vocab_size=1200, hidden_size=1024)
model = LlamaForCausalLM(llama_config)
model = model.half()
shard_config = ShardConfig(
enable_tensor_parallelism=True if test_config["tp_size"] > 1 else False, inference_only=True
)
infer_engine = TPInferEngine(orig_model, shard_config, BATCH_SIZE, MAX_INPUT_LEN, MAX_OUTPUT_LEN)
shard_config = ShardConfig(
enable_tensor_parallelism=True if test_config["tp_size"] > 1 else False, inference_only=True
)
infer_engine = TPInferEngine(model, shard_config, BATCH_SIZE, MAX_INPUT_LEN, MAX_OUTPUT_LEN)
init_to_get_rotary(model.model, base=10000)
generate_kwargs = dict(max_new_tokens=MAX_OUTPUT_LEN, do_sample=False)
generate_kwargs = dict(do_sample=False)
outputs = infer_engine.generate(data, **generate_kwargs)
input_tokens = {
"input_ids": torch.randint(1, 1000, (BATCH_SIZE, MAX_INPUT_LEN), device="cuda"),
"attention_mask": torch.ones((BATCH_SIZE, MAX_INPUT_LEN), device="cuda"),
}
outputs = infer_engine.generate(input_tokens, **generate_kwargs)
assert outputs is not None
assert outputs is not None
def check_llama(rank, world_size, port):

4
tests/test_infer_ops/triton/test_llama2_token_attn.py

@ -38,9 +38,7 @@ def test():
q = torch.empty((Z, head_num, head_dim), dtype=dtype, device="cuda").normal_(mean=0.1, std=0.2)
k = torch.empty((Z * seq_len, head_num, head_dim), dtype=dtype, device="cuda").normal_(mean=0.4, std=0.2)
v = torch.empty((Z * seq_len, head_num, head_dim), dtype=dtype, device="cuda").normal_(mean=0.3, std=0.2)
o = torch.empty_like()
# o = torch.empty((Z, head_num, head_dim), dtype=dtype, device="cuda").normal_(mean=0.3, std=0.2)
o = torch.empty((Z, head_num, head_dim), dtype=dtype, device="cuda")
max_kv_cache_len = seq_len
kv_cache_start_loc = torch.zeros((Z,), dtype=torch.int32, device="cuda")
kv_cache_loc = torch.zeros((Z, seq_len), dtype=torch.int32, device="cuda")

Loading…
Cancel
Save