[autoparallel] add resnet autoparallel unit test and add backward weight communication cost (#1589)

pull/1587/head^2
YuliangLiu0306 2 years ago committed by GitHub
parent 7c18a588c8
commit d164449d00
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -103,7 +103,7 @@ class ConvHandler(OperatorHandler):
# memory_cost pair
memory_cost = (memory_cost_forward, memory_cost_backward)
return memory_cost, memory_cost_forward_activation, memory_cost_backward_activation
return memory_cost, memory_cost_forward_activation, memory_cost_backward_activation, memory_cost_backward_weight
def split_input_batch_weight_out_channel(self, mesh_dim_0, mesh_dim_1):
name = f'S{mesh_dim_0}S{mesh_dim_1} = S{mesh_dim_0}R x RS{mesh_dim_1}'
@ -132,15 +132,18 @@ class ConvHandler(OperatorHandler):
sharding_size_forward = self.device_mesh.shape[mesh_dim_0] * self.device_mesh.shape[mesh_dim_1]
sharding_size_backward_activation = self.device_mesh.shape[mesh_dim_0]
sharding_size_weight = self.device_mesh.shape[mesh_dim_1]
memory_cost, _, memory_cost_backward_activation = self._generate_memory_cost(
memory_cost, _, memory_cost_backward_activation, memory_cost_backward_weight = self._generate_memory_cost(
sharding_size_forward, sharding_size_backward_activation, sharding_size_weight)
# This strategy do not need to do all_reduce operation during forward
communication_cost_forward = 0
# compute the backward communication cost of this strategy
communication_cost_backward = self.device_mesh.all_reduce_cost(memory_cost_backward_activation, mesh_dim_1)
# compute the backward communication cost to all reduce the input activation grad
communication_cost_backward_activation = self.device_mesh.all_reduce_cost(memory_cost_backward_activation,
mesh_dim_1)
# compute the backward communication cost to all reduce the weight due to data parallel
communication_cost_backward_weight = self.device_mesh.all_reduce_cost(memory_cost_backward_weight, mesh_dim_0)
# total communication cost
communication_cost = communication_cost_forward + communication_cost_backward
communication_cost = communication_cost_forward + communication_cost_backward_activation + communication_cost_backward_weight
sharding_strategies = ShardingStrategy(name,
output_sharding_spec=sharding_spec_for_output,
@ -178,11 +181,16 @@ class ConvHandler(OperatorHandler):
sharding_size_forward = self.device_mesh.shape[mesh_dim_0]
sharding_size_backward_activation = self.device_mesh.shape[mesh_dim_0]
sharding_size_weight = 1
memory_cost, _, _ = self._generate_memory_cost(sharding_size_forward, sharding_size_backward_activation,
memory_cost, _, _, memory_cost_backward_weight = self._generate_memory_cost(sharding_size_forward,
sharding_size_backward_activation,
sharding_size_weight)
# This strategy do not need to do all_reduce operation in both forward and backward phase.
communication_cost = 0
# This strategy do not need to do all_reduce operation in forward phase.
communication_cost_forward = 0
# compute the backward communication cost to all reduce the weight due to data parallel
communication_cost_backward_weight = self.device_mesh.all_reduce_cost(memory_cost_backward_weight, mesh_dim_0)
# compute the total cost
communication_cost = communication_cost_forward + communication_cost_backward_weight
sharding_strategies = ShardingStrategy(name,
output_sharding_spec=sharding_spec_for_output,
compute_cost=compute_cost,
@ -220,15 +228,17 @@ class ConvHandler(OperatorHandler):
sharding_size_forward = self.device_mesh.shape[mesh_dim_0]
sharding_size_backward_activation = self.device_mesh.shape[mesh_dim_0] * self.device_mesh.shape[mesh_dim_1]
sharding_size_weight = self.device_mesh.shape[mesh_dim_1]
memory_cost, memory_cost_forward_activation, _ = self._generate_memory_cost(sharding_size_forward,
sharding_size_backward_activation,
sharding_size_weight)
memory_cost, memory_cost_forward_activation, _, memory_cost_backward_weight = self._generate_memory_cost(
sharding_size_forward, sharding_size_backward_activation, sharding_size_weight)
# compute the communication cost of this strategy during forward phase
communication_cost_forward = self.device_mesh.all_reduce_cost(memory_cost_forward_activation, mesh_dim_1)
# This strategy do not need to do all_reduce operation during backward phase
communication_cost_backward = 0
communication_cost = communication_cost_forward + communication_cost_backward
# This strategy do not need to do all_reduce operation to compute the input activation grad
communication_cost_backward_activation = 0
# compute the backward communication cost to all reduce the weight due to data parallel
communication_cost_backward_weight = self.device_mesh.all_reduce_cost(memory_cost_backward_weight, mesh_dim_0)
# compute total cost
communication_cost = communication_cost_forward + communication_cost_backward_activation + communication_cost_backward_weight
sharding_strategies = ShardingStrategy(name,
output_sharding_spec=sharding_spec_for_output,
compute_cost=compute_cost,
@ -265,7 +275,7 @@ class ConvHandler(OperatorHandler):
sharding_size_forward = self.device_mesh.shape[mesh_dim_1]
sharding_size_backward_activation = self.device_mesh.shape[mesh_dim_0]
sharding_size_weight = self.device_mesh.shape[mesh_dim_0] * self.device_mesh.shape[mesh_dim_1]
memory_cost, memory_cost_forward_activation, memory_cost_backward_activation = self._generate_memory_cost(
memory_cost, memory_cost_forward_activation, memory_cost_backward_activation, _ = self._generate_memory_cost(
sharding_size_forward, sharding_size_backward_activation, sharding_size_weight)
# compute the communication cost of this strategy during forward phase
@ -309,9 +319,8 @@ class ConvHandler(OperatorHandler):
sharding_size_forward = 1
sharding_size_backward_activation = self.device_mesh.shape[mesh_dim_0]
sharding_size_weight = self.device_mesh.shape[mesh_dim_0]
memory_cost, memory_cost_forward_activation, _ = self._generate_memory_cost(sharding_size_forward,
sharding_size_backward_activation,
sharding_size_weight)
memory_cost, memory_cost_forward_activation, _, _ = self._generate_memory_cost(
sharding_size_forward, sharding_size_backward_activation, sharding_size_weight)
# compute the communication cost of this strategy during forward phase
communication_cost_forward = self.device_mesh.all_reduce_cost(memory_cost_forward_activation, mesh_dim_0)
@ -354,7 +363,7 @@ class ConvHandler(OperatorHandler):
sharding_size_forward = self.device_mesh.shape[mesh_dim_0]
sharding_size_backward_activation = 1
sharding_size_weight = self.device_mesh.shape[mesh_dim_0]
memory_cost, _, memory_cost_backward_activation = self._generate_memory_cost(
memory_cost, _, memory_cost_backward_activation, _ = self._generate_memory_cost(
sharding_size_forward, sharding_size_backward_activation, sharding_size_weight)
# This strategy do not need to do all_reduce during forward phase
@ -398,7 +407,7 @@ class ConvHandler(OperatorHandler):
sharding_size_forward = 1
sharding_size_backward_activation = 1
sharding_size_weight = 1
memory_cost, _, _ = self._generate_memory_cost(sharding_size_forward, sharding_size_backward_activation,
memory_cost, _, _, _ = self._generate_memory_cost(sharding_size_forward, sharding_size_backward_activation,
sharding_size_weight)
# This strategy do not need to do all_reduce in both forward and backward phase
@ -441,11 +450,17 @@ class ConvHandler(OperatorHandler):
sharding_size_backward_activation = self.device_mesh.mesh_shape[mesh_dim_0] * self.device_mesh.mesh_shape[
mesh_dim_1]
sharding_size_weight = 1
memory_cost, _, _ = self._generate_memory_cost(sharding_size_forward, sharding_size_backward_activation,
memory_cost, _, _, memory_cost_backward_weight = self._generate_memory_cost(sharding_size_forward,
sharding_size_backward_activation,
sharding_size_weight)
# This strategy do not need to do all_reduce in both forward and backward phase
communication_cost = 0
# This strategy do not need to do all_reduce in forward phase
communication_cost_forward = 0
# compute the backward communication cost to all reduce the weight due to data parallel
communication_cost_backward_weight = self.device_mesh.flatten_device_mesh.all_reduce_cost(
memory_cost_backward_weight, 0)
# compute the total communication cost
communication_cost = communication_cost_backward_weight + communication_cost_forward
sharding_strategies = ShardingStrategy(name,
output_sharding_spec=sharding_spec_for_output,
@ -485,9 +500,8 @@ class ConvHandler(OperatorHandler):
sharding_size_backward_activation = self.device_mesh.mesh_shape[mesh_dim_0] * self.device_mesh.mesh_shape[
mesh_dim_1]
sharding_size_weight = self.device_mesh.mesh_shape[mesh_dim_0] * self.device_mesh.mesh_shape[mesh_dim_1]
memory_cost, memory_cost_forward_activation, _ = self._generate_memory_cost(sharding_size_forward,
sharding_size_backward_activation,
sharding_size_weight)
memory_cost, memory_cost_forward_activation, _, _ = self._generate_memory_cost(
sharding_size_forward, sharding_size_backward_activation, sharding_size_weight)
# compute communication cost during forward phase
communication_cost_forward = self.device_mesh.flatten_device_mesh.all_reduce_cost(

@ -0,0 +1,125 @@
import torch
from torch.fx import GraphModule
import torch.nn as nn
import pytest
from colossalai.fx.tracer.tracer import ColoTracer
from colossalai.auto_parallel.solver.sharding_strategy import ShardingStrategy, StrategiesVector
from colossalai.tensor.shape_consistency import ShapeConsistencyManager
from colossalai.device.device_mesh import DeviceMesh
from colossalai.auto_parallel.solver.strategies_constructor import StrategiesConstructor
from colossalai.auto_parallel.solver.cost_graph import CostGraph
from copy import deepcopy
from colossalai.auto_parallel.solver import Solver
from torchvision.models import resnet34, resnet50
from colossalai.auto_parallel.solver.constants import *
from colossalai.auto_parallel.solver.graph_analysis import GraphAnalyser
class ConvModel(nn.Module):
def __init__(self, c_in, c_out):
super().__init__()
self.conv1 = nn.Conv2d(c_in, c_out, kernel_size=3)
self.conv2 = nn.Conv2d(c_out, c_out, kernel_size=3)
self.conv3 = nn.Conv2d(c_out, c_out, kernel_size=3)
self.relu = nn.ReLU()
def forward(self, x):
x = x * 2
x = self.conv1(x)
x = self.conv2(x)
x = x / 2
x = self.conv3(x)
x = self.relu(x)
return x
@pytest.mark.skip("for higher testing speed")
def test_cost_graph():
physical_mesh_id = torch.arange(0, 8)
mesh_shape = (2, 4)
# [[0, 1]
# [2, 3]]
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape)
shape_consistency_manager = ShapeConsistencyManager()
tracer = ColoTracer()
# model = ConvModel(16, 32)
# input_sample = {'x': torch.rand(4, 16, 64, 64).to('meta')}
model = resnet50(num_classes=100000)
input_sample = {'x': torch.rand(128, 3, 224, 224).to('meta')}
graph = tracer.trace(root=model, meta_args=input_sample)
# graph():
# %x : torch.Tensor [#users=1] = placeholder[target=x]
# %conv1 : [#users=1] = call_module[target=conv1](args = (%x,), kwargs = {})
# %bn1 : [#users=1] = call_module[target=bn1](args = (%conv1,), kwargs = {})
# %relu : [#users=1] = call_module[target=relu](args = (%bn1,), kwargs = {})
# %maxpool : [#users=2] = call_module[target=maxpool](args = (%relu,), kwargs = {})
# %layer1_0_conv1 : [#users=1] = call_module[target=layer1.0.conv1](args = (%maxpool,), kwargs = {})
# %layer1_0_bn1 : [#users=1] = call_module[target=layer1.0.bn1](args = (%layer1_0_conv1,), kwargs = {})
# %layer1_0_relu : [#users=1] = call_module[target=layer1.0.relu](args = (%layer1_0_bn1,), kwargs = {})
# %layer1_0_conv2 : [#users=1] = call_module[target=layer1.0.conv2](args = (%layer1_0_relu,), kwargs = {})
# %layer1_0_bn2 : [#users=1] = call_module[target=layer1.0.bn2](args = (%layer1_0_conv2,), kwargs = {})
# %add : [#users=1] = call_function[target=operator.add](args = (%layer1_0_bn2, %maxpool), kwargs = {})
# %layer1_0_relu_1 : [#users=2] = call_module[target=layer1.0.relu](args = (%add,), kwargs = {})
# %layer1_1_conv1 : [#users=1] = call_module[target=layer1.1.conv1](args = (%layer1_0_relu_1,), kwargs = {})
# %layer1_1_bn1 : [#users=1] = call_module[target=layer1.1.bn1](args = (%layer1_1_conv1,), kwargs = {})
# %layer1_1_relu : [#users=1] = call_module[target=layer1.1.relu](args = (%layer1_1_bn1,), kwargs = {})
# %layer1_1_conv2 : [#users=1] = call_module[target=layer1.1.conv2](args = (%layer1_1_relu,), kwargs = {})
# %layer1_1_bn2 : [#users=1] = call_module[target=layer1.1.bn2](args = (%layer1_1_conv2,), kwargs = {})
# %add_1 : [#users=1] = call_function[target=operator.add](args = (%layer1_1_bn2, %layer1_0_relu_1), kwargs = {})
# ...
# %avgpool : [#users=1] = call_module[target=avgpool](args = (%layer4_2_relu_1,), kwargs = {})
# %flatten : [#users=1] = call_function[target=torch.flatten](args = (%avgpool, 1), kwargs = {})
# %fc : [#users=1] = call_module[target=fc](args = (%flatten,), kwargs = {})
# return fc
gm = GraphModule(model, graph, model.__class__.__name__)
gm.recompile()
graph_analyser = GraphAnalyser(gm)
liveness_list = graph_analyser.liveness_analysis()
# print(len(liveness_dict[0].unique_live_vars))
# assert False
solver_options = {'fast_mode': True}
strategies_constructor = StrategiesConstructor(graph, device_mesh, shape_consistency_manager, solver_options)
strategies_constructor.build_strategies_and_cost()
cost_graph = CostGraph(strategies_constructor.leaf_strategies)
cost_graph.simplify_graph()
solver = Solver(gm.graph, strategies_constructor, cost_graph, graph_analyser, memory_budget=1620017824.0)
# solver = Solver(gm.graph, strategies_constructor, cost_graph, graph_analyser)
ret = solver.call_solver_serialized_args()
print(ret)
strategies_list = list(ret[0])
print(strategies_list)
computation_cost = 0
communication_cost = 0
communication_cost_bn = 0
memory_cost = 0
for index, node in enumerate(graph.nodes):
if node.op == 'call_module':
submod = node.graph.owning_module.get_submodule(node.target)
if type(submod) in ELEMENTWISE_MODULE_OP:
input_spec = node.args[0].strategies_vector[strategies_list[index]].output_sharding_spec
print(node.name, input_spec)
continue
if type(submod) in BATCHNORM_MODULE_OP:
communication_cost_bn += node.strategies_vector[strategies_list[index]].communication_cost
print(node.name, node.strategies_vector[strategies_list[index]].name)
computation_cost += node.strategies_vector[strategies_list[index]].compute_cost
communication_cost += node.strategies_vector[strategies_list[index]].communication_cost
node_memory_cost = node.strategies_vector[strategies_list[index]].memory_cost
if isinstance(node_memory_cost, tuple):
node_memory_cost = node_memory_cost[0]
memory_cost += node_memory_cost
print(f'computation cost is {computation_cost}')
print(f'communication cost is {communication_cost}')
print(f'memory cost is {memory_cost}')
print(f'bn communication cost is {communication_cost_bn}')
if __name__ == '__main__':
test_cost_graph()
Loading…
Cancel
Save