[doc] explaination of loading large pretrained models (#4741)

pull/4593/merge
Baizhou Zhang 1 year ago committed by GitHub
parent 4c4482f3ad
commit d151dcab74
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -19,6 +19,30 @@ Model must be boosted by `colossalai.booster.Booster` before saving. `checkpoint
Model must be boosted by `colossalai.booster.Booster` before loading. It will detect the checkpoint format automatically, and load in corresponding way.
If you want to load a pretrained model from Huggingface while the model is too large to be directly loaded through `from_pretrained` on a single device, a recommended way is to download the pretrained weights to a local directory, and use `booster.load` to load from that directory after boosting the model. Also, the model should be initialized under lazy initialization context to avoid OOM. Here is an example pseudocode:
```python
from colossalai.lazy import LazyInitContext
from huggingface_hub import snapshot_download
...
# Initialize model under lazy init context
init_ctx = LazyInitContext(default_device=get_current_device)
with init_ctx:
model = LlamaForCausalLM(config)
...
# Wrap the model through Booster.boost
model, optimizer, _, _, _ = booster.boost(model, optimizer)
# download huggingface pretrained model to local directory.
model_dir = snapshot_download(repo_id="lysandre/arxiv-nlp")
# load model using booster.load
booster.load(model, model_dir)
...
```
## Optimizer Checkpoint
{{ autodoc:colossalai.booster.Booster.save_optimizer }}

@ -19,6 +19,30 @@
模型在加载前必须被 `colossalai.booster.Booster` 封装。它会自动检测 checkpoint 格式,并以相应的方式加载。
如果您想从Huggingface加载预训练好的模型但模型太大以至于无法在单个设备上通过“from_pretrained”直接加载推荐的方法是将预训练的模型权重下载到本地并在封装模型后使用`booster.load`直接从本地路径加载。为了避免内存不足,模型需要在`Lazy Initialization`的环境下初始化。以下是示例伪代码:
```python
from colossalai.lazy import LazyInitContext
from huggingface_hub import snapshot_download
...
# Initialize model under lazy init context
init_ctx = LazyInitContext(default_device=get_current_device)
with init_ctx:
model = LlamaForCausalLM(config)
...
# Wrap the model through Booster.boost
model, optimizer, _, _, _ = booster.boost(model, optimizer)
# download huggingface pretrained model to local directory.
model_dir = snapshot_download(repo_id="lysandre/arxiv-nlp")
# load model using booster.load
booster.load(model, model_dir)
...
```
## 优化器 Checkpoint

Loading…
Cancel
Save