mirror of https://github.com/hpcaitech/ColossalAI
[booster] refactor all dp fashion plugins (#3684)
* [booster] add dp plugin base * [booster] inherit dp plugin base * [booster] refactor unit testspull/3567/merge
parent
b49020c1b1
commit
d0915f54f4
|
@ -0,0 +1,72 @@
|
||||||
|
import random
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import torch
|
||||||
|
import torch.distributed as dist
|
||||||
|
from torch.utils.data import DataLoader
|
||||||
|
from torch.utils.data.distributed import DistributedSampler
|
||||||
|
|
||||||
|
from .plugin_base import Plugin
|
||||||
|
|
||||||
|
|
||||||
|
class DPPluginBase(Plugin):
|
||||||
|
"""This is a base class for all DP plugins. It sets up world size and rank, and provides data loader creation.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self) -> None:
|
||||||
|
super().__init__()
|
||||||
|
assert dist.is_initialized(
|
||||||
|
), 'torch.distributed is not initialized, please use colossalai.launch to create the distributed environment'
|
||||||
|
self.rank = dist.get_rank()
|
||||||
|
self.world_size = dist.get_world_size()
|
||||||
|
|
||||||
|
def prepare_train_dataloader(self,
|
||||||
|
dataset,
|
||||||
|
batch_size,
|
||||||
|
shuffle=False,
|
||||||
|
seed=1024,
|
||||||
|
drop_last=False,
|
||||||
|
pin_memory=False,
|
||||||
|
num_workers=0,
|
||||||
|
**kwargs):
|
||||||
|
r"""
|
||||||
|
Prepare a dataloader for distributed training. The dataloader will be wrapped by
|
||||||
|
`torch.utils.data.DataLoader` and `torch.utils.data.DistributedSampler`.
|
||||||
|
|
||||||
|
Note:
|
||||||
|
1. Evaluation datasets should not be passed to this function.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
dataset (`torch.utils.data.Dataset`): The dataset to be loaded.
|
||||||
|
shuffle (bool, optional): Whether to shuffle the dataset. Defaults to False.
|
||||||
|
seed (int, optional): Random worker seed for sampling, defaults to 1024.
|
||||||
|
add_sampler: Whether to add ``DistributedDataParallelSampler`` to the dataset. Defaults to True.
|
||||||
|
drop_last (bool, optional): Set to True to drop the last incomplete batch, if the dataset size
|
||||||
|
is not divisible by the batch size. If False and the size of dataset is not divisible by
|
||||||
|
the batch size, then the last batch will be smaller, defaults to False.
|
||||||
|
pin_memory (bool, optional): Whether to pin memory address in CPU memory. Defaults to False.
|
||||||
|
num_workers (int, optional): Number of worker threads for this dataloader. Defaults to 0.
|
||||||
|
kwargs (dict): optional parameters for ``torch.utils.data.DataLoader``, more details could be found in
|
||||||
|
`DataLoader <https://pytorch.org/docs/stable/_modules/torch/utils/data/dataloader.html#DataLoader>`_.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
:class:`torch.utils.data.DataLoader`: A DataLoader used for training or testing.
|
||||||
|
"""
|
||||||
|
_kwargs = kwargs.copy()
|
||||||
|
sampler = DistributedSampler(dataset, num_replicas=self.world_size, rank=self.rank, shuffle=shuffle)
|
||||||
|
|
||||||
|
# Deterministic dataloader
|
||||||
|
def seed_worker(worker_id):
|
||||||
|
worker_seed = seed
|
||||||
|
np.random.seed(worker_seed)
|
||||||
|
torch.manual_seed(worker_seed)
|
||||||
|
random.seed(worker_seed)
|
||||||
|
|
||||||
|
return DataLoader(dataset,
|
||||||
|
batch_size=batch_size,
|
||||||
|
sampler=sampler,
|
||||||
|
worker_init_fn=seed_worker,
|
||||||
|
drop_last=drop_last,
|
||||||
|
pin_memory=pin_memory,
|
||||||
|
num_workers=num_workers,
|
||||||
|
**_kwargs)
|
|
@ -1,36 +1,25 @@
|
||||||
import random
|
|
||||||
import warnings
|
|
||||||
from typing import Callable, List, Optional, Tuple, Union
|
|
||||||
from pathlib import Path
|
|
||||||
import os
|
|
||||||
import logging
|
import logging
|
||||||
|
import os
|
||||||
|
import warnings
|
||||||
|
from pathlib import Path
|
||||||
|
from typing import Callable, List, Optional, Tuple, Union
|
||||||
|
|
||||||
import numpy as np
|
|
||||||
import torch
|
import torch
|
||||||
import torch.distributed as dist
|
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
from torch import Tensor
|
from torch import Tensor
|
||||||
from torch.optim import Optimizer
|
from torch.optim import Optimizer
|
||||||
from torch.optim.lr_scheduler import _LRScheduler as LRScheduler
|
from torch.optim.lr_scheduler import _LRScheduler as LRScheduler
|
||||||
from torch.utils.data import DataLoader
|
from torch.utils.data import DataLoader
|
||||||
from torch.utils.data.distributed import DistributedSampler
|
|
||||||
|
|
||||||
from colossalai.checkpoint_io import CheckpointIO, GeneralCheckpointIO
|
from colossalai.checkpoint_io import CheckpointIndexFile, CheckpointIO, GeneralCheckpointIO
|
||||||
from colossalai.checkpoint_io.utils import save_state_dict
|
from colossalai.checkpoint_io.utils import get_base_filenames, get_shard_filename, save_state_dict
|
||||||
from colossalai.cluster import DistCoordinator
|
from colossalai.cluster import DistCoordinator
|
||||||
from colossalai.interface import ModelWrapper, OptimizerWrapper
|
from colossalai.interface import ModelWrapper, OptimizerWrapper
|
||||||
from colossalai.utils import get_current_device
|
from colossalai.utils import get_current_device
|
||||||
from colossalai.zero import GeminiDDP, zero_model_wrapper, zero_optim_wrapper
|
from colossalai.zero import GeminiDDP, zero_model_wrapper, zero_optim_wrapper
|
||||||
from colossalai.zero.gemini.memory_tracer import MemStats
|
from colossalai.zero.gemini.memory_tracer import MemStats
|
||||||
|
|
||||||
from colossalai.checkpoint_io.utils import (
|
from .dp_plugin_base import DPPluginBase
|
||||||
get_base_filenames,
|
|
||||||
get_shard_filename
|
|
||||||
)
|
|
||||||
|
|
||||||
from colossalai.checkpoint_io import CheckpointIndexFile
|
|
||||||
|
|
||||||
from .plugin_base import Plugin
|
|
||||||
|
|
||||||
__all__ = ['GeminiPlugin']
|
__all__ = ['GeminiPlugin']
|
||||||
|
|
||||||
|
@ -72,7 +61,13 @@ class GeminiCheckpointIO(GeneralCheckpointIO):
|
||||||
if self.coordinator.is_master():
|
if self.coordinator.is_master():
|
||||||
super().save_lr_scheduler(lr_scheduler, checkpoint)
|
super().save_lr_scheduler(lr_scheduler, checkpoint)
|
||||||
|
|
||||||
def save_sharded_model(self, model: GeminiDDP, checkpoint_path: str, gather_dtensor: bool = False, variant: Optional[str] = None, max_shard_size: int = 1024, use_safetensors: bool = False):
|
def save_sharded_model(self,
|
||||||
|
model: GeminiDDP,
|
||||||
|
checkpoint_path: str,
|
||||||
|
gather_dtensor: bool = False,
|
||||||
|
variant: Optional[str] = None,
|
||||||
|
max_shard_size: int = 1024,
|
||||||
|
use_safetensors: bool = False):
|
||||||
"""
|
"""
|
||||||
Save sharded model
|
Save sharded model
|
||||||
"""
|
"""
|
||||||
|
@ -88,25 +83,27 @@ class GeminiCheckpointIO(GeneralCheckpointIO):
|
||||||
total_size = total_size + shard_pair[1]
|
total_size = total_size + shard_pair[1]
|
||||||
for key in shard.keys():
|
for key in shard.keys():
|
||||||
index_file.append_weight_map(key, shard_file)
|
index_file.append_weight_map(key, shard_file)
|
||||||
|
|
||||||
checkpoint_file_path = os.path.join(checkpoint_path, shard_file)
|
checkpoint_file_path = os.path.join(checkpoint_path, shard_file)
|
||||||
save_state_dict(shard, checkpoint_file_path, use_safetensors)
|
save_state_dict(shard, checkpoint_file_path, use_safetensors)
|
||||||
|
|
||||||
index_file.append_meta_data("total_size", total_size)
|
index_file.append_meta_data("total_size", total_size)
|
||||||
index_file.write_index_file(save_index_file)
|
index_file.write_index_file(save_index_file)
|
||||||
logging.info(
|
logging.info(f"The model is going to be split to checkpoint shards. "
|
||||||
f"The model is going to be split to checkpoint shards. "
|
f"You can find where each parameters has been saved in the "
|
||||||
f"You can find where each parameters has been saved in the "
|
f"index located at {save_index_file}.")
|
||||||
f"index located at {save_index_file}."
|
|
||||||
)
|
|
||||||
|
|
||||||
|
def load_sharded_model(self,
|
||||||
def load_sharded_model(self, model: GeminiDDP, checkpoint_index_file: Path, strict: bool = False, use_safetensors: bool = False):
|
model: GeminiDDP,
|
||||||
|
checkpoint_index_file: Path,
|
||||||
|
strict: bool = False,
|
||||||
|
use_safetensors: bool = False):
|
||||||
"""
|
"""
|
||||||
load shard model, load model from multiple files
|
load shard model, load model from multiple files
|
||||||
"""
|
"""
|
||||||
return super().load_sharded_model(model, checkpoint_index_file, strict, use_safetensors, load_sub_module=False)
|
return super().load_sharded_model(model, checkpoint_index_file, strict, use_safetensors, load_sub_module=False)
|
||||||
|
|
||||||
|
|
||||||
class GeminiModel(ModelWrapper):
|
class GeminiModel(ModelWrapper):
|
||||||
|
|
||||||
def __init__(self, module: nn.Module, gemini_config: dict, verbose: bool = False) -> None:
|
def __init__(self, module: nn.Module, gemini_config: dict, verbose: bool = False) -> None:
|
||||||
|
@ -148,7 +145,7 @@ class GeminiOptimizer(OptimizerWrapper):
|
||||||
raise NotImplementedError('Gemini does not support clip_grad_by_value')
|
raise NotImplementedError('Gemini does not support clip_grad_by_value')
|
||||||
|
|
||||||
|
|
||||||
class GeminiPlugin(Plugin):
|
class GeminiPlugin(DPPluginBase):
|
||||||
"""
|
"""
|
||||||
Plugin for Gemini.
|
Plugin for Gemini.
|
||||||
|
|
||||||
|
@ -217,11 +214,7 @@ class GeminiPlugin(Plugin):
|
||||||
norm_type: float = 2.0,
|
norm_type: float = 2.0,
|
||||||
verbose: bool = False,
|
verbose: bool = False,
|
||||||
) -> None:
|
) -> None:
|
||||||
|
super().__init__()
|
||||||
assert dist.is_initialized(
|
|
||||||
), 'torch.distributed is not initialized, please use colossalai.launch to create the distributed environment'
|
|
||||||
self.rank = dist.get_rank()
|
|
||||||
self.world_size = dist.get_world_size()
|
|
||||||
self.gemini_config = dict(
|
self.gemini_config = dict(
|
||||||
device=(device or get_current_device()),
|
device=(device or get_current_device()),
|
||||||
placement_policy=placement_policy,
|
placement_policy=placement_policy,
|
||||||
|
@ -260,57 +253,6 @@ class GeminiPlugin(Plugin):
|
||||||
def supported_devices(self) -> List[str]:
|
def supported_devices(self) -> List[str]:
|
||||||
return ['cuda']
|
return ['cuda']
|
||||||
|
|
||||||
def prepare_train_dataloader(self,
|
|
||||||
dataset,
|
|
||||||
batch_size,
|
|
||||||
shuffle=False,
|
|
||||||
seed=1024,
|
|
||||||
drop_last=False,
|
|
||||||
pin_memory=False,
|
|
||||||
num_workers=0,
|
|
||||||
**kwargs):
|
|
||||||
r"""
|
|
||||||
Prepare a dataloader for distributed training. The dataloader will be wrapped by
|
|
||||||
`torch.utils.data.DataLoader` and `torch.utils.data.DistributedSampler`.
|
|
||||||
|
|
||||||
Note:
|
|
||||||
1. Evaluation datasets should not be passed to this function.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
dataset (`torch.utils.data.Dataset`): The dataset to be loaded.
|
|
||||||
shuffle (bool, optional): Whether to shuffle the dataset. Defaults to False.
|
|
||||||
seed (int, optional): Random worker seed for sampling, defaults to 1024.
|
|
||||||
add_sampler: Whether to add ``DistributedDataParallelSampler`` to the dataset. Defaults to True.
|
|
||||||
drop_last (bool, optional): Set to True to drop the last incomplete batch, if the dataset size
|
|
||||||
is not divisible by the batch size. If False and the size of dataset is not divisible by
|
|
||||||
the batch size, then the last batch will be smaller, defaults to False.
|
|
||||||
pin_memory (bool, optional): Whether to pin memory address in CPU memory. Defaults to False.
|
|
||||||
num_workers (int, optional): Number of worker threads for this dataloader. Defaults to 0.
|
|
||||||
kwargs (dict): optional parameters for ``torch.utils.data.DataLoader``, more details could be found in
|
|
||||||
`DataLoader <https://pytorch.org/docs/stable/_modules/torch/utils/data/dataloader.html#DataLoader>`_.
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
:class:`torch.utils.data.DataLoader`: A DataLoader used for training or testing.
|
|
||||||
"""
|
|
||||||
_kwargs = kwargs.copy()
|
|
||||||
sampler = DistributedSampler(dataset, num_replicas=self.world_size, rank=self.rank, shuffle=shuffle)
|
|
||||||
|
|
||||||
# Deterministic dataloader
|
|
||||||
def seed_worker(worker_id):
|
|
||||||
worker_seed = seed
|
|
||||||
np.random.seed(worker_seed)
|
|
||||||
torch.manual_seed(worker_seed)
|
|
||||||
random.seed(worker_seed)
|
|
||||||
|
|
||||||
return DataLoader(dataset,
|
|
||||||
batch_size=batch_size,
|
|
||||||
sampler=sampler,
|
|
||||||
worker_init_fn=seed_worker,
|
|
||||||
drop_last=drop_last,
|
|
||||||
pin_memory=pin_memory,
|
|
||||||
num_workers=num_workers,
|
|
||||||
**_kwargs)
|
|
||||||
|
|
||||||
def configure(
|
def configure(
|
||||||
self,
|
self,
|
||||||
model: nn.Module,
|
model: nn.Module,
|
||||||
|
|
|
@ -1,24 +1,20 @@
|
||||||
import random
|
|
||||||
import warnings
|
import warnings
|
||||||
from typing import Callable, List, Optional, Tuple, Union
|
from typing import Callable, List, Optional, Tuple, Union
|
||||||
|
|
||||||
import numpy as np
|
|
||||||
import torch
|
import torch
|
||||||
import torch.distributed as dist
|
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
from torch import Tensor
|
from torch import Tensor
|
||||||
from torch.optim import Optimizer
|
from torch.optim import Optimizer
|
||||||
from torch.optim.lr_scheduler import _LRScheduler as LRScheduler
|
from torch.optim.lr_scheduler import _LRScheduler as LRScheduler
|
||||||
from torch.utils._pytree import tree_map
|
from torch.utils._pytree import tree_map
|
||||||
from torch.utils.data import DataLoader
|
from torch.utils.data import DataLoader
|
||||||
from torch.utils.data.distributed import DistributedSampler
|
|
||||||
|
|
||||||
from colossalai.checkpoint_io import CheckpointIO
|
from colossalai.checkpoint_io import CheckpointIO
|
||||||
from colossalai.interface import ModelWrapper, OptimizerWrapper
|
from colossalai.interface import ModelWrapper, OptimizerWrapper
|
||||||
from colossalai.utils import get_current_device
|
from colossalai.utils import get_current_device
|
||||||
from colossalai.zero import zero_model_wrapper, zero_optim_wrapper
|
from colossalai.zero import zero_model_wrapper, zero_optim_wrapper
|
||||||
|
|
||||||
from .plugin_base import Plugin
|
from .dp_plugin_base import DPPluginBase
|
||||||
from .torch_ddp_plugin import TorchDDPCheckpointIO
|
from .torch_ddp_plugin import TorchDDPCheckpointIO
|
||||||
|
|
||||||
__all__ = ['LowLevelZeroPlugin']
|
__all__ = ['LowLevelZeroPlugin']
|
||||||
|
@ -88,7 +84,7 @@ class LowLevelZeroOptimizer(OptimizerWrapper):
|
||||||
raise NotImplementedError('LowLevelZero does not support clip_grad_by_value')
|
raise NotImplementedError('LowLevelZero does not support clip_grad_by_value')
|
||||||
|
|
||||||
|
|
||||||
class LowLevelZeroPlugin(Plugin):
|
class LowLevelZeroPlugin(DPPluginBase):
|
||||||
"""
|
"""
|
||||||
Plugin for low level zero.
|
Plugin for low level zero.
|
||||||
|
|
||||||
|
@ -142,15 +138,10 @@ class LowLevelZeroPlugin(Plugin):
|
||||||
cpu_offload: bool = False,
|
cpu_offload: bool = False,
|
||||||
verbose: bool = False,
|
verbose: bool = False,
|
||||||
) -> None:
|
) -> None:
|
||||||
|
super().__init__()
|
||||||
assert dist.is_initialized(
|
|
||||||
), 'torch.distributed is not initialized, please use colossalai.launch to create the distributed environment'
|
|
||||||
assert stage in (1, 2), f'LowLevelZeroPlugin only supports stage 1/2 training'
|
assert stage in (1, 2), f'LowLevelZeroPlugin only supports stage 1/2 training'
|
||||||
assert precision in ('fp16', 'fp32'), f'LowLevelZeroPlugin only supports fp16/fp32 training'
|
assert precision in ('fp16', 'fp32'), f'LowLevelZeroPlugin only supports fp16/fp32 training'
|
||||||
|
|
||||||
self.rank = dist.get_rank()
|
|
||||||
self.world_size = dist.get_world_size()
|
|
||||||
|
|
||||||
self.stage = stage
|
self.stage = stage
|
||||||
self.precision = precision
|
self.precision = precision
|
||||||
self.zero_optim_config = dict(reduce_bucket_size=reduce_bucket_size_in_m * 1024 * 1024,
|
self.zero_optim_config = dict(reduce_bucket_size=reduce_bucket_size_in_m * 1024 * 1024,
|
||||||
|
@ -183,57 +174,6 @@ class LowLevelZeroPlugin(Plugin):
|
||||||
def supported_devices(self) -> List[str]:
|
def supported_devices(self) -> List[str]:
|
||||||
return ['cuda']
|
return ['cuda']
|
||||||
|
|
||||||
def prepare_train_dataloader(self,
|
|
||||||
dataset,
|
|
||||||
batch_size,
|
|
||||||
shuffle=False,
|
|
||||||
seed=1024,
|
|
||||||
drop_last=False,
|
|
||||||
pin_memory=False,
|
|
||||||
num_workers=0,
|
|
||||||
**kwargs):
|
|
||||||
r"""
|
|
||||||
Prepare a dataloader for distributed training. The dataloader will be wrapped by
|
|
||||||
`torch.utils.data.DataLoader` and `torch.utils.data.DistributedSampler`.
|
|
||||||
|
|
||||||
Note:
|
|
||||||
1. Evaluation datasets should not be passed to this function.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
dataset (`torch.utils.data.Dataset`): The dataset to be loaded.
|
|
||||||
shuffle (bool, optional): Whether to shuffle the dataset. Defaults to False.
|
|
||||||
seed (int, optional): Random worker seed for sampling, defaults to 1024.
|
|
||||||
add_sampler: Whether to add ``DistributedDataParallelSampler`` to the dataset. Defaults to True.
|
|
||||||
drop_last (bool, optional): Set to True to drop the last incomplete batch, if the dataset size
|
|
||||||
is not divisible by the batch size. If False and the size of dataset is not divisible by
|
|
||||||
the batch size, then the last batch will be smaller, defaults to False.
|
|
||||||
pin_memory (bool, optional): Whether to pin memory address in CPU memory. Defaults to False.
|
|
||||||
num_workers (int, optional): Number of worker threads for this dataloader. Defaults to 0.
|
|
||||||
kwargs (dict): optional parameters for ``torch.utils.data.DataLoader``, more details could be found in
|
|
||||||
`DataLoader <https://pytorch.org/docs/stable/_modules/torch/utils/data/dataloader.html#DataLoader>`_.
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
:class:`torch.utils.data.DataLoader`: A DataLoader used for training or testing.
|
|
||||||
"""
|
|
||||||
_kwargs = kwargs.copy()
|
|
||||||
sampler = DistributedSampler(dataset, num_replicas=self.world_size, rank=self.rank, shuffle=shuffle)
|
|
||||||
|
|
||||||
# Deterministic dataloader
|
|
||||||
def seed_worker(worker_id):
|
|
||||||
worker_seed = seed
|
|
||||||
np.random.seed(worker_seed)
|
|
||||||
torch.manual_seed(worker_seed)
|
|
||||||
random.seed(worker_seed)
|
|
||||||
|
|
||||||
return DataLoader(dataset,
|
|
||||||
batch_size=batch_size,
|
|
||||||
sampler=sampler,
|
|
||||||
worker_init_fn=seed_worker,
|
|
||||||
drop_last=drop_last,
|
|
||||||
pin_memory=pin_memory,
|
|
||||||
num_workers=num_workers,
|
|
||||||
**_kwargs)
|
|
||||||
|
|
||||||
def configure(
|
def configure(
|
||||||
self,
|
self,
|
||||||
model: nn.Module,
|
model: nn.Module,
|
||||||
|
|
|
@ -1,21 +1,16 @@
|
||||||
import random
|
|
||||||
from typing import Callable, List, Tuple, Union
|
from typing import Callable, List, Tuple, Union
|
||||||
|
|
||||||
import numpy as np
|
|
||||||
import torch
|
|
||||||
import torch.distributed as dist
|
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
from torch.nn.parallel import DistributedDataParallel as DDP
|
from torch.nn.parallel import DistributedDataParallel as DDP
|
||||||
from torch.optim import Optimizer
|
from torch.optim import Optimizer
|
||||||
from torch.optim.lr_scheduler import _LRScheduler as LRScheduler
|
from torch.optim.lr_scheduler import _LRScheduler as LRScheduler
|
||||||
from torch.utils.data import DataLoader
|
from torch.utils.data import DataLoader
|
||||||
from torch.utils.data.distributed import DistributedSampler
|
|
||||||
|
|
||||||
from colossalai.checkpoint_io import CheckpointIO, GeneralCheckpointIO
|
from colossalai.checkpoint_io import CheckpointIO, GeneralCheckpointIO
|
||||||
from colossalai.cluster import DistCoordinator
|
from colossalai.cluster import DistCoordinator
|
||||||
from colossalai.interface import ModelWrapper, OptimizerWrapper
|
from colossalai.interface import ModelWrapper, OptimizerWrapper
|
||||||
|
|
||||||
from .plugin_base import Plugin
|
from .dp_plugin_base import DPPluginBase
|
||||||
|
|
||||||
__all__ = ['TorchDDPPlugin']
|
__all__ = ['TorchDDPPlugin']
|
||||||
|
|
||||||
|
@ -66,7 +61,7 @@ class TorchDDPModel(ModelWrapper):
|
||||||
return self.module.module
|
return self.module.module
|
||||||
|
|
||||||
|
|
||||||
class TorchDDPPlugin(Plugin):
|
class TorchDDPPlugin(DPPluginBase):
|
||||||
"""
|
"""
|
||||||
Plugin for PyTorch DDP.
|
Plugin for PyTorch DDP.
|
||||||
|
|
||||||
|
@ -97,11 +92,7 @@ class TorchDDPPlugin(Plugin):
|
||||||
check_reduction: bool = False,
|
check_reduction: bool = False,
|
||||||
gradient_as_bucket_view: bool = False,
|
gradient_as_bucket_view: bool = False,
|
||||||
static_graph: bool = False) -> None:
|
static_graph: bool = False) -> None:
|
||||||
|
super().__init__()
|
||||||
assert dist.is_initialized(
|
|
||||||
), 'torch.distributed is not initialized, please use colossalai.launch to create the distributed environment'
|
|
||||||
self.rank = dist.get_rank()
|
|
||||||
self.world_size = dist.get_world_size()
|
|
||||||
self.ddp_kwargs = dict(broadcast_buffers=broadcast_buffers,
|
self.ddp_kwargs = dict(broadcast_buffers=broadcast_buffers,
|
||||||
bucket_cap_mb=bucket_cap_mb,
|
bucket_cap_mb=bucket_cap_mb,
|
||||||
find_unused_parameters=find_unused_parameters,
|
find_unused_parameters=find_unused_parameters,
|
||||||
|
@ -124,57 +115,6 @@ class TorchDDPPlugin(Plugin):
|
||||||
def supported_devices(self) -> List[str]:
|
def supported_devices(self) -> List[str]:
|
||||||
return ['cuda']
|
return ['cuda']
|
||||||
|
|
||||||
def prepare_train_dataloader(self,
|
|
||||||
dataset,
|
|
||||||
batch_size,
|
|
||||||
shuffle=False,
|
|
||||||
seed=1024,
|
|
||||||
drop_last=False,
|
|
||||||
pin_memory=False,
|
|
||||||
num_workers=0,
|
|
||||||
**kwargs):
|
|
||||||
r"""
|
|
||||||
Prepare a dataloader for distributed training. The dataloader will be wrapped by
|
|
||||||
`torch.utils.data.DataLoader` and `torch.utils.data.DistributedSampler`.
|
|
||||||
|
|
||||||
Note:
|
|
||||||
1. Evaluation datasets should not be passed to this function.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
dataset (`torch.utils.data.Dataset`): The dataset to be loaded.
|
|
||||||
shuffle (bool, optional): Whether to shuffle the dataset. Defaults to False.
|
|
||||||
seed (int, optional): Random worker seed for sampling, defaults to 1024.
|
|
||||||
add_sampler: Whether to add ``DistributedDataParallelSampler`` to the dataset. Defaults to True.
|
|
||||||
drop_last (bool, optional): Set to True to drop the last incomplete batch, if the dataset size
|
|
||||||
is not divisible by the batch size. If False and the size of dataset is not divisible by
|
|
||||||
the batch size, then the last batch will be smaller, defaults to False.
|
|
||||||
pin_memory (bool, optional): Whether to pin memory address in CPU memory. Defaults to False.
|
|
||||||
num_workers (int, optional): Number of worker threads for this dataloader. Defaults to 0.
|
|
||||||
kwargs (dict): optional parameters for ``torch.utils.data.DataLoader``, more details could be found in
|
|
||||||
`DataLoader <https://pytorch.org/docs/stable/_modules/torch/utils/data/dataloader.html#DataLoader>`_.
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
:class:`torch.utils.data.DataLoader`: A DataLoader used for training or testing.
|
|
||||||
"""
|
|
||||||
_kwargs = kwargs.copy()
|
|
||||||
sampler = DistributedSampler(dataset, num_replicas=self.world_size, rank=self.rank, shuffle=shuffle)
|
|
||||||
|
|
||||||
# Deterministic dataloader
|
|
||||||
def seed_worker(worker_id):
|
|
||||||
worker_seed = seed
|
|
||||||
np.random.seed(worker_seed)
|
|
||||||
torch.manual_seed(worker_seed)
|
|
||||||
random.seed(worker_seed)
|
|
||||||
|
|
||||||
return DataLoader(dataset,
|
|
||||||
batch_size=batch_size,
|
|
||||||
sampler=sampler,
|
|
||||||
worker_init_fn=seed_worker,
|
|
||||||
drop_last=drop_last,
|
|
||||||
pin_memory=pin_memory,
|
|
||||||
num_workers=num_workers,
|
|
||||||
**_kwargs)
|
|
||||||
|
|
||||||
def configure(
|
def configure(
|
||||||
self,
|
self,
|
||||||
model: nn.Module,
|
model: nn.Module,
|
||||||
|
|
|
@ -0,0 +1,85 @@
|
||||||
|
from typing import Callable, List, Tuple, Union
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import torch.distributed as dist
|
||||||
|
import torch.nn as nn
|
||||||
|
from torch.optim import Optimizer
|
||||||
|
from torch.optim.lr_scheduler import _LRScheduler as LRScheduler
|
||||||
|
from torch.utils.data import DataLoader, TensorDataset
|
||||||
|
|
||||||
|
import colossalai
|
||||||
|
from colossalai.booster.plugin.dp_plugin_base import DPPluginBase
|
||||||
|
from colossalai.checkpoint_io import CheckpointIO
|
||||||
|
from colossalai.interface import OptimizerWrapper
|
||||||
|
from colossalai.testing import rerun_if_address_is_in_use, spawn
|
||||||
|
|
||||||
|
|
||||||
|
class DPPluginWrapper(DPPluginBase):
|
||||||
|
"""This is a wrapper class for testing DP plugin initialization and dataloader creation.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def configure(
|
||||||
|
self,
|
||||||
|
model: nn.Module,
|
||||||
|
optimizer: Optimizer,
|
||||||
|
criterion: Callable = None,
|
||||||
|
dataloader: DataLoader = None,
|
||||||
|
lr_scheduler: LRScheduler = None,
|
||||||
|
) -> Tuple[Union[nn.Module, OptimizerWrapper, LRScheduler, DataLoader]]:
|
||||||
|
pass
|
||||||
|
|
||||||
|
def control_checkpoint_io(self) -> bool:
|
||||||
|
pass
|
||||||
|
|
||||||
|
def control_device(self) -> bool:
|
||||||
|
pass
|
||||||
|
|
||||||
|
def control_precision(self) -> bool:
|
||||||
|
pass
|
||||||
|
|
||||||
|
def get_checkpoint_io(self) -> CheckpointIO:
|
||||||
|
pass
|
||||||
|
|
||||||
|
def support_no_sync(self) -> bool:
|
||||||
|
pass
|
||||||
|
|
||||||
|
def supported_devices(self) -> List[str]:
|
||||||
|
pass
|
||||||
|
|
||||||
|
def supported_precisions(self) -> List[str]:
|
||||||
|
pass
|
||||||
|
|
||||||
|
|
||||||
|
def check_dataloader_sharding():
|
||||||
|
plugin = DPPluginWrapper()
|
||||||
|
|
||||||
|
# create a custom dasetset with 0 to 10
|
||||||
|
dataset = TensorDataset(torch.arange(0, 10))
|
||||||
|
train_dataloader = plugin.prepare_train_dataloader(dataset, batch_size=2)
|
||||||
|
|
||||||
|
# get the first batch of data
|
||||||
|
batch = next(iter(train_dataloader))[0].cuda()
|
||||||
|
is_rank_0 = dist.get_rank() == 0
|
||||||
|
|
||||||
|
if is_rank_0:
|
||||||
|
batch_to_compare = batch.clone()
|
||||||
|
else:
|
||||||
|
batch_to_compare = batch
|
||||||
|
# pass to the rank 1 value to rank 0
|
||||||
|
dist.broadcast(batch_to_compare, src=1)
|
||||||
|
|
||||||
|
# compare on rank 0
|
||||||
|
if is_rank_0:
|
||||||
|
assert not torch.equal(batch,
|
||||||
|
batch_to_compare), 'Same number was found across ranks but expected it to be different'
|
||||||
|
|
||||||
|
|
||||||
|
def run_dist(rank, world_size, port):
|
||||||
|
# init dist env
|
||||||
|
colossalai.launch(config=dict(), rank=rank, world_size=world_size, port=port, host='localhost')
|
||||||
|
check_dataloader_sharding()
|
||||||
|
|
||||||
|
|
||||||
|
@rerun_if_address_is_in_use()
|
||||||
|
def test_dp_plugin_dataloader():
|
||||||
|
spawn(run_dist, 2)
|
|
@ -117,34 +117,9 @@ def check_gemini_plugin(init_method: str = 'none', early_stop: bool = True):
|
||||||
assert len(failed_info) == 0, '\n'.join([f'{k}: {v}' for k, v in failed_info.items()])
|
assert len(failed_info) == 0, '\n'.join([f'{k}: {v}' for k, v in failed_info.items()])
|
||||||
|
|
||||||
|
|
||||||
def check_dataloader_sharding():
|
|
||||||
plugin = GeminiPlugin()
|
|
||||||
|
|
||||||
# create a custom dasetset with 0 to 10
|
|
||||||
dataset = torch.utils.data.TensorDataset(torch.arange(0, 10))
|
|
||||||
train_dataloader = plugin.prepare_train_dataloader(dataset, batch_size=2)
|
|
||||||
|
|
||||||
# get the first batch of data
|
|
||||||
batch = next(iter(train_dataloader))[0].cuda()
|
|
||||||
is_rank_0 = dist.get_rank() == 0
|
|
||||||
|
|
||||||
if is_rank_0:
|
|
||||||
batch_to_compare = batch.clone()
|
|
||||||
else:
|
|
||||||
batch_to_compare = batch
|
|
||||||
# pass to the rank 1 value to rank 0
|
|
||||||
dist.broadcast(batch_to_compare, src=1)
|
|
||||||
|
|
||||||
# compare on rank 0
|
|
||||||
if is_rank_0:
|
|
||||||
assert not torch.equal(batch,
|
|
||||||
batch_to_compare), 'Same number was found across ranks but expected it to be different'
|
|
||||||
|
|
||||||
|
|
||||||
def run_dist(rank, world_size, port, early_stop: bool = True):
|
def run_dist(rank, world_size, port, early_stop: bool = True):
|
||||||
# init dist env
|
# init dist env
|
||||||
colossalai.launch(config=dict(), rank=rank, world_size=world_size, port=port, host='localhost')
|
colossalai.launch(config=dict(), rank=rank, world_size=world_size, port=port, host='localhost')
|
||||||
check_dataloader_sharding()
|
|
||||||
check_gemini_plugin(early_stop=early_stop)
|
check_gemini_plugin(early_stop=early_stop)
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -83,30 +83,6 @@ def check_low_level_zero_plugin(stage: int, early_stop: bool = True):
|
||||||
assert len(failed_info) == 0, '\n'.join([f'{k}: {v}' for k, v in failed_info.items()])
|
assert len(failed_info) == 0, '\n'.join([f'{k}: {v}' for k, v in failed_info.items()])
|
||||||
|
|
||||||
|
|
||||||
def check_dataloader_sharding():
|
|
||||||
plugin = LowLevelZeroPlugin()
|
|
||||||
|
|
||||||
# create a custom dasetset with 0 to 10
|
|
||||||
dataset = torch.utils.data.TensorDataset(torch.arange(0, 10))
|
|
||||||
train_dataloader = plugin.prepare_train_dataloader(dataset, batch_size=2)
|
|
||||||
|
|
||||||
# get the first batch of data
|
|
||||||
batch = next(iter(train_dataloader))[0].cuda()
|
|
||||||
is_rank_0 = dist.get_rank() == 0
|
|
||||||
|
|
||||||
if is_rank_0:
|
|
||||||
batch_to_compare = batch.clone()
|
|
||||||
else:
|
|
||||||
batch_to_compare = batch
|
|
||||||
# pass to the rank 1 value to rank 0
|
|
||||||
dist.broadcast(batch_to_compare, src=1)
|
|
||||||
|
|
||||||
# compare on rank 0
|
|
||||||
if is_rank_0:
|
|
||||||
assert not torch.equal(batch,
|
|
||||||
batch_to_compare), 'Same number was found across ranks but expected it to be different'
|
|
||||||
|
|
||||||
|
|
||||||
def run_dist(rank, world_size, port, early_stop: bool = True):
|
def run_dist(rank, world_size, port, early_stop: bool = True):
|
||||||
# init dist env
|
# init dist env
|
||||||
colossalai.launch(config=dict(), rank=rank, world_size=world_size, port=port, host='localhost')
|
colossalai.launch(config=dict(), rank=rank, world_size=world_size, port=port, host='localhost')
|
||||||
|
|
|
@ -44,57 +44,9 @@ def check_torch_ddp_plugin():
|
||||||
torch.cuda.empty_cache()
|
torch.cuda.empty_cache()
|
||||||
|
|
||||||
|
|
||||||
def check_dataloader_sharding():
|
|
||||||
plugin = TorchDDPPlugin()
|
|
||||||
|
|
||||||
# create a custom dasetset with 0 to 10
|
|
||||||
dataset = torch.utils.data.TensorDataset(torch.arange(0, 10))
|
|
||||||
train_dataloader = plugin.prepare_train_dataloader(dataset, batch_size=2)
|
|
||||||
|
|
||||||
# get the first batch of data
|
|
||||||
batch = next(iter(train_dataloader))[0].cuda()
|
|
||||||
is_rank_0 = dist.get_rank() == 0
|
|
||||||
|
|
||||||
if is_rank_0:
|
|
||||||
batch_to_compare = batch.clone()
|
|
||||||
else:
|
|
||||||
batch_to_compare = batch
|
|
||||||
# pass to the rank 1 value to rank 0
|
|
||||||
dist.broadcast(batch_to_compare, src=1)
|
|
||||||
|
|
||||||
# compare on rank 0
|
|
||||||
if is_rank_0:
|
|
||||||
assert not torch.equal(batch,
|
|
||||||
batch_to_compare), 'Same number was found across ranks but expected it to be different'
|
|
||||||
|
|
||||||
|
|
||||||
def check_checkpoint_save_and_load():
|
|
||||||
model_fn, data_gen_fn, output_transform_fn, _ = model_zoo['timm_resnet']
|
|
||||||
|
|
||||||
plugin = TorchDDPPlugin()
|
|
||||||
booster = Booster(plugin=plugin)
|
|
||||||
|
|
||||||
model = model_fn()
|
|
||||||
optimizer = SGD(model.parameters(), lr=1e-3)
|
|
||||||
criterion = lambda x: x.mean()
|
|
||||||
data = data_gen_fn()
|
|
||||||
|
|
||||||
data = {k: v.to('cuda') if torch.is_tensor(v) or 'Tensor' in v.__class__.__name__ else v for k, v in data.items()}
|
|
||||||
|
|
||||||
model, optimizer, criterion, _, _ = booster.boost(model, optimizer, criterion)
|
|
||||||
|
|
||||||
output = model(**data)
|
|
||||||
output = output_transform_fn(output)
|
|
||||||
output_key = list(output.keys())[0]
|
|
||||||
loss = criterion(output[output_key])
|
|
||||||
|
|
||||||
booster.backward(loss, optimizer)
|
|
||||||
|
|
||||||
|
|
||||||
def run_dist(rank, world_size, port):
|
def run_dist(rank, world_size, port):
|
||||||
# init dist env
|
# init dist env
|
||||||
colossalai.launch(config=dict(), rank=rank, world_size=world_size, port=port, host='localhost')
|
colossalai.launch(config=dict(), rank=rank, world_size=world_size, port=port, host='localhost')
|
||||||
check_dataloader_sharding()
|
|
||||||
check_torch_ddp_plugin()
|
check_torch_ddp_plugin()
|
||||||
|
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue