mirror of https://github.com/hpcaitech/ColossalAI
add ci (#2641)
parent
0b2a738393
commit
d03f4429c1
|
@ -92,6 +92,12 @@ cd ColossalAI
|
|||
CUDA_EXT=1 pip install .
|
||||
```
|
||||
|
||||
#### Step 3:Accelerate with flash attention by xformers(Optional)
|
||||
|
||||
```
|
||||
pip install xformers
|
||||
```
|
||||
|
||||
### Option #2: Use Docker
|
||||
|
||||
To use the stable diffusion Docker image, you can either build using the provided the [Dockerfile](./docker/Dockerfile) or pull a Docker image from our Docker hub.
|
||||
|
|
|
@ -539,6 +539,8 @@ if __name__ == "__main__":
|
|||
raise ValueError("-n/--name and -r/--resume cannot be specified both."
|
||||
"If you want to resume training in a new log folder, "
|
||||
"use -n/--name in combination with --resume_from_checkpoint")
|
||||
|
||||
ckpt = None
|
||||
if opt.resume:
|
||||
rank_zero_info("Resuming from {}".format(opt.resume))
|
||||
if not os.path.exists(opt.resume):
|
||||
|
|
|
@ -0,0 +1,17 @@
|
|||
#!/bin/bash
|
||||
set -euxo pipefail
|
||||
|
||||
conda env create -f environment.yaml
|
||||
|
||||
conda activate ldm
|
||||
|
||||
conda install pytorch==1.12.1 torchvision==0.13.1 torchaudio==0.12.1 cudatoolkit=11.3 -c pytorch
|
||||
pip install transformers diffusers invisible-watermark
|
||||
|
||||
CUDA_EXT=1 pip install colossalai
|
||||
|
||||
pip install pytorch-lightning
|
||||
|
||||
wget https://huggingface.co/stabilityai/stable-diffusion-2-base/resolve/main/512-base-ema.ckpt
|
||||
|
||||
python main.py --logdir /tmp --train --base configs/Teyvat/train_colossalai_teyvat.yaml --ckpt 512-base-ema.ckpt
|
Loading…
Reference in New Issue