mirror of https://github.com/hpcaitech/ColossalAI
colo init context add device attr. (#866)
parent
2238758c2e
commit
d01d3b8cb0
|
@ -58,6 +58,10 @@ class ColoTensor(object):
|
||||||
def shape(self):
|
def shape(self):
|
||||||
return torch.Size(self._size)
|
return torch.Size(self._size)
|
||||||
|
|
||||||
|
@property
|
||||||
|
def device(self):
|
||||||
|
return self._torch_tensor.device
|
||||||
|
|
||||||
def size(self, dim=None):
|
def size(self, dim=None):
|
||||||
if dim is None:
|
if dim is None:
|
||||||
return self.shape
|
return self.shape
|
||||||
|
@ -121,8 +125,8 @@ class ColoTensor(object):
|
||||||
# Reshape to get shard for this rank and we don't want autograd
|
# Reshape to get shard for this rank and we don't want autograd
|
||||||
# recording here for the narrow op and 'local_shard' should be a
|
# recording here for the narrow op and 'local_shard' should be a
|
||||||
# leaf variable in the autograd graph.
|
# leaf variable in the autograd graph.
|
||||||
self._torch_tensor = self._torch_tensor.narrow(dim,
|
self._torch_tensor = self._torch_tensor.narrow(dim, local_rank * chunk_size, chunk_size).detach(
|
||||||
local_rank * chunk_size, chunk_size).detach().contiguous() # TODO Shall we clone() here since detach() will point to the old tensor?
|
).contiguous() # TODO Shall we clone() here since detach() will point to the old tensor?
|
||||||
self._torch_tensor.requires_grad = self._requires_grad
|
self._torch_tensor.requires_grad = self._requires_grad
|
||||||
self._size = self._torch_tensor.size()
|
self._size = self._torch_tensor.size()
|
||||||
self._device = device # TODO A `fake` device now because torch_tensor.device always = cpu
|
self._device = device # TODO A `fake` device now because torch_tensor.device always = cpu
|
||||||
|
|
|
@ -1,3 +1,4 @@
|
||||||
|
from colossalai.utils.cuda import get_current_device
|
||||||
from .utils import InsertPostInitMethodToModuleSubClasses
|
from .utils import InsertPostInitMethodToModuleSubClasses
|
||||||
import torch
|
import torch
|
||||||
# from colossalai.logging import get_dist_logger
|
# from colossalai.logging import get_dist_logger
|
||||||
|
@ -8,9 +9,15 @@ from colossalai.tensor import ColoTensor
|
||||||
|
|
||||||
class ColoInitContext(InsertPostInitMethodToModuleSubClasses):
|
class ColoInitContext(InsertPostInitMethodToModuleSubClasses):
|
||||||
|
|
||||||
def __init__(self, lazy_memory_allocate=False):
|
def __init__(self, lazy_memory_allocate: bool = False, device: torch.device = torch.device('cpu')):
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
lazy_memory_allocate (bool, optional): whether to allocate memory for the parameter tensors. Defaults to False.
|
||||||
|
device (torch.device, optional): the device parameters initialized are resident on. Defaults to torch.device('cpu').
|
||||||
|
"""
|
||||||
super().__init__()
|
super().__init__()
|
||||||
self._lazy_memory_allocate = lazy_memory_allocate
|
self._lazy_memory_allocate = lazy_memory_allocate
|
||||||
|
self._device = device
|
||||||
|
|
||||||
def _post_init_method(self, module: torch.nn.Module, *args, **kwargs):
|
def _post_init_method(self, module: torch.nn.Module, *args, **kwargs):
|
||||||
"""
|
"""
|
||||||
|
@ -26,4 +33,5 @@ class ColoInitContext(InsertPostInitMethodToModuleSubClasses):
|
||||||
save_torch_payload = True if not self._lazy_memory_allocate else False
|
save_torch_payload = True if not self._lazy_memory_allocate else False
|
||||||
for name, param in name_list:
|
for name, param in name_list:
|
||||||
delattr(module, name)
|
delattr(module, name)
|
||||||
setattr(module, name, ColoTensor.init_from_torch_tensor(tensor=param, save_payload=save_torch_payload))
|
setattr(module, name,
|
||||||
|
ColoTensor.init_from_torch_tensor(tensor=param.to(self._device), save_payload=save_torch_payload))
|
||||||
|
|
|
@ -5,17 +5,16 @@ import torch
|
||||||
from colossalai.tensor import ColoTensor
|
from colossalai.tensor import ColoTensor
|
||||||
from copy import deepcopy
|
from copy import deepcopy
|
||||||
|
|
||||||
|
from colossalai.utils.cuda import get_current_device
|
||||||
|
|
||||||
def test_linear():
|
|
||||||
|
def test_lazy_init():
|
||||||
in_dim = 4
|
in_dim = 4
|
||||||
out_dim = 5
|
out_dim = 5
|
||||||
|
|
||||||
with ColoInitContext(lazy_memory_allocate=True) as ctx:
|
with ColoInitContext(lazy_memory_allocate=True) as ctx:
|
||||||
fc = torch.nn.Linear(in_dim, out_dim, bias=True)
|
fc = torch.nn.Linear(in_dim, out_dim, bias=True)
|
||||||
|
|
||||||
print(fc.weight.numel())
|
|
||||||
print(fc.bias.numel())
|
|
||||||
|
|
||||||
# lazy_memory_allocate=True, no payload is maintained
|
# lazy_memory_allocate=True, no payload is maintained
|
||||||
assert fc.weight._torch_tensor.numel() == 0
|
assert fc.weight._torch_tensor.numel() == 0
|
||||||
|
|
||||||
|
@ -23,5 +22,18 @@ def test_linear():
|
||||||
assert fc.weight._torch_tensor.numel() == in_dim * out_dim
|
assert fc.weight._torch_tensor.numel() == in_dim * out_dim
|
||||||
|
|
||||||
|
|
||||||
|
def test_device():
|
||||||
|
in_dim = 4
|
||||||
|
out_dim = 5
|
||||||
|
|
||||||
|
with ColoInitContext(lazy_memory_allocate=True, device=get_current_device()) as ctx:
|
||||||
|
fc = torch.nn.Linear(in_dim, out_dim, bias=True)
|
||||||
|
|
||||||
|
# eval an lazy parameter
|
||||||
|
fc.weight.torch_tensor()
|
||||||
|
assert fc.weight.device == get_current_device()
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
test_linear()
|
test_lazy_init()
|
||||||
|
test_device()
|
||||||
|
|
Loading…
Reference in New Issue