'fix/format' (#573)

pull/673/head
yuxuan-lou 2022-03-31 15:46:11 +08:00 committed by binmakeswell
parent b0f708dfc1
commit cfb41297ff
2 changed files with 6 additions and 6 deletions

View File

@ -106,7 +106,7 @@ class MemTracerOpHook(BaseOpHook):
# output file info
self._logger.info(f"dump a memory statistics as pickle to {self._data_prefix}-{self._rank}.pkl")
home_dir = Path.home()
with open (home_dir.joinpath(f".cache/colossal/mem-{self._rank}.pkl"), "wb") as f:
with open(home_dir.joinpath(f".cache/colossal/mem-{self._rank}.pkl"), "wb") as f:
pickle.dump(self.async_mem_monitor.state_dict, f)
self._count += 1
self._logger.debug(f"data file has been refreshed {self._count} times")
@ -115,4 +115,4 @@ class MemTracerOpHook(BaseOpHook):
def save_results(self, data_file: Union[str, Path]):
with open(data_file, "w") as f:
f.write(json.dumps(self.async_mem_monitor.state_dict))
f.write(json.dumps(self.async_mem_monitor.state_dict))

View File

@ -85,8 +85,7 @@ class BaseSchedule(ABC):
data_iter: Iterable,
forward_only: bool,
return_loss: bool = True,
return_output_label: bool = True
):
return_output_label: bool = True):
"""The process function over a batch of dataset for training or evaluation.
Args:
@ -107,8 +106,9 @@ class BaseSchedule(ABC):
@staticmethod
def _call_engine_criterion(engine, outputs, labels):
assert isinstance(outputs, (torch.Tensor, list, tuple)
), f'Expect output of model is (torch.Tensor, list, tuple), got {type(outputs)}'
assert isinstance(
outputs,
(torch.Tensor, list, tuple)), f'Expect output of model is (torch.Tensor, list, tuple), got {type(outputs)}'
if isinstance(outputs, torch.Tensor):
outputs = (outputs,)
if isinstance(labels, torch.Tensor):