mirror of https://github.com/hpcaitech/ColossalAI
parent
ed5ebd1735
commit
ce9401ad52
@ -1,176 +0,0 @@
|
||||
# code from AutoGPTQ auto_gptq: https://github.com/PanQiWei/AutoGPTQ/blob/main/auto_gptq/nn_modules/triton_utils/custom_autotune.py
|
||||
|
||||
import builtins
|
||||
import math
|
||||
import time
|
||||
from typing import Dict
|
||||
|
||||
import triton
|
||||
|
||||
|
||||
class CustomizedTritonAutoTuner(triton.KernelInterface):
|
||||
def __init__(
|
||||
self,
|
||||
fn,
|
||||
arg_names,
|
||||
configs,
|
||||
key,
|
||||
reset_to_zero,
|
||||
prune_configs_by: Dict = None,
|
||||
nearest_power_of_two: bool = False,
|
||||
):
|
||||
if not configs:
|
||||
self.configs = [triton.Config({}, num_warps=4, num_stages=2)]
|
||||
else:
|
||||
self.configs = configs
|
||||
self.key_idx = [arg_names.index(k) for k in key]
|
||||
self.nearest_power_of_two = nearest_power_of_two
|
||||
self.cache = {}
|
||||
# hook to reset all required tensor to zeros before relaunching a kernel
|
||||
self.hook = lambda args: 0
|
||||
if reset_to_zero is not None:
|
||||
self.reset_idx = [arg_names.index(k) for k in reset_to_zero]
|
||||
|
||||
def _hook(args):
|
||||
for i in self.reset_idx:
|
||||
args[i].zero_()
|
||||
|
||||
self.hook = _hook
|
||||
self.arg_names = arg_names
|
||||
# prune configs
|
||||
if prune_configs_by:
|
||||
perf_model, top_k = prune_configs_by["perf_model"], prune_configs_by["top_k"]
|
||||
if "early_config_prune" in prune_configs_by:
|
||||
early_config_prune = prune_configs_by["early_config_prune"]
|
||||
else:
|
||||
perf_model, top_k, early_config_prune = None, None, None
|
||||
self.perf_model, self.configs_top_k = perf_model, top_k
|
||||
self.early_config_prune = early_config_prune
|
||||
self.fn = fn
|
||||
|
||||
def _bench(self, *args, config, **meta):
|
||||
# check for conflicts, i.e. meta-parameters both provided
|
||||
# as kwargs and by the autotuner
|
||||
conflicts = meta.keys() & config.kwargs.keys()
|
||||
if conflicts:
|
||||
raise ValueError(
|
||||
f"Conflicting meta-parameters: {', '.join(conflicts)}."
|
||||
" Make sure that you don't re-define auto-tuned symbols."
|
||||
)
|
||||
# augment meta-parameters with tunable ones
|
||||
current = dict(meta, **config.kwargs)
|
||||
|
||||
def kernel_call():
|
||||
if config.pre_hook:
|
||||
config.pre_hook(self.nargs)
|
||||
self.hook(args)
|
||||
self.fn.run(*args, num_warps=config.num_warps, num_stages=config.num_stages, **current)
|
||||
|
||||
try:
|
||||
# In testings using only 40 reps seems to be close enough and it appears to be what PyTorch uses
|
||||
# PyTorch also sets fast_flush to True, but I didn't see any speedup so I'll leave the default
|
||||
return triton.testing.do_bench(kernel_call, percentiles=(0.5, 0.2, 0.8), rep=40)
|
||||
except triton.compiler.OutOfResources:
|
||||
return (float("inf"), float("inf"), float("inf"))
|
||||
|
||||
def run(self, *args, **kwargs):
|
||||
self.nargs = dict(zip(self.arg_names, args))
|
||||
if len(self.configs) > 1:
|
||||
key = tuple(args[i] for i in self.key_idx)
|
||||
|
||||
# This reduces the amount of autotuning by rounding the keys to the nearest power of two
|
||||
# In my testing this gives decent results, and greatly reduces the amount of tuning required
|
||||
if self.nearest_power_of_two:
|
||||
key = tuple([2 ** int(math.log2(x) + 0.5) for x in key])
|
||||
|
||||
if key not in self.cache:
|
||||
# prune configs
|
||||
pruned_configs = self.prune_configs(kwargs)
|
||||
bench_start = time.time()
|
||||
timings = {config: self._bench(*args, config=config, **kwargs) for config in pruned_configs}
|
||||
bench_end = time.time()
|
||||
self.bench_time = bench_end - bench_start
|
||||
self.cache[key] = builtins.min(timings, key=timings.get)
|
||||
self.hook(args)
|
||||
self.configs_timings = timings
|
||||
config = self.cache[key]
|
||||
else:
|
||||
config = self.configs[0]
|
||||
self.best_config = config
|
||||
if config.pre_hook is not None:
|
||||
config.pre_hook(self.nargs)
|
||||
return self.fn.run(*args, num_warps=config.num_warps, num_stages=config.num_stages, **kwargs, **config.kwargs)
|
||||
|
||||
def prune_configs(self, kwargs):
|
||||
pruned_configs = self.configs
|
||||
if self.early_config_prune:
|
||||
pruned_configs = self.early_config_prune(self.configs, self.nargs)
|
||||
if self.perf_model:
|
||||
top_k = self.configs_top_k
|
||||
if isinstance(top_k, float) and top_k <= 1.0:
|
||||
top_k = int(len(self.configs) * top_k)
|
||||
if len(pruned_configs) > top_k:
|
||||
est_timing = {
|
||||
config: self.perf_model(
|
||||
**self.nargs,
|
||||
**kwargs,
|
||||
**config.kwargs,
|
||||
num_stages=config.num_stages,
|
||||
num_warps=config.num_warps,
|
||||
)
|
||||
for config in pruned_configs
|
||||
}
|
||||
pruned_configs = sorted(est_timing.keys(), key=lambda x: est_timing[x])[:top_k]
|
||||
return pruned_configs
|
||||
|
||||
def warmup(self, *args, **kwargs):
|
||||
self.nargs = dict(zip(self.arg_names, args))
|
||||
for config in self.prune_configs(kwargs):
|
||||
self.fn.warmup(
|
||||
*args,
|
||||
num_warps=config.num_warps,
|
||||
num_stages=config.num_stages,
|
||||
**kwargs,
|
||||
**config.kwargs,
|
||||
)
|
||||
self.nargs = None
|
||||
|
||||
|
||||
def autotune(configs, key, prune_configs_by=None, reset_to_zero=None, nearest_power_of_two=False):
|
||||
def decorator(fn):
|
||||
return CustomizedTritonAutoTuner(
|
||||
fn, fn.arg_names, configs, key, reset_to_zero, prune_configs_by, nearest_power_of_two
|
||||
)
|
||||
|
||||
return decorator
|
||||
|
||||
|
||||
def matmul248_kernel_config_pruner(configs, nargs):
|
||||
"""
|
||||
The main purpose of this function is to shrink BLOCK_SIZE_* when the corresponding dimension is smaller.
|
||||
"""
|
||||
m = max(2 ** int(math.ceil(math.log2(nargs["M"]))), 16)
|
||||
n = max(2 ** int(math.ceil(math.log2(nargs["N"]))), 16)
|
||||
k = max(2 ** int(math.ceil(math.log2(nargs["K"]))), 16)
|
||||
|
||||
used = set()
|
||||
for config in configs:
|
||||
block_size_m = min(m, config.kwargs["BLOCK_SIZE_M"])
|
||||
block_size_n = min(n, config.kwargs["BLOCK_SIZE_N"])
|
||||
block_size_k = min(k, config.kwargs["BLOCK_SIZE_K"])
|
||||
group_size_m = config.kwargs["GROUP_SIZE_M"]
|
||||
|
||||
if (block_size_m, block_size_n, block_size_k, group_size_m, config.num_stages, config.num_warps) in used:
|
||||
continue
|
||||
|
||||
used.add((block_size_m, block_size_n, block_size_k, group_size_m, config.num_stages, config.num_warps))
|
||||
yield triton.Config(
|
||||
{
|
||||
"BLOCK_SIZE_M": block_size_m,
|
||||
"BLOCK_SIZE_N": block_size_n,
|
||||
"BLOCK_SIZE_K": block_size_k,
|
||||
"GROUP_SIZE_M": group_size_m,
|
||||
},
|
||||
num_stages=config.num_stages,
|
||||
num_warps=config.num_warps,
|
||||
)
|
@ -1,543 +0,0 @@
|
||||
# Adapted from AutoGPTQ auto_gptq: https://github.com/PanQiWei/AutoGPTQ
|
||||
|
||||
import torch
|
||||
import triton
|
||||
import triton.language as tl
|
||||
|
||||
from .custom_autotune import autotune, matmul248_kernel_config_pruner
|
||||
|
||||
|
||||
@triton.jit
|
||||
def tanh(x):
|
||||
# Tanh is just a scaled sigmoid
|
||||
return 2 * tl.sigmoid(2 * x) - 1
|
||||
|
||||
|
||||
@triton.jit
|
||||
def cosh(x):
|
||||
exp_x = tl.exp(x)
|
||||
return (exp_x + 1.0 / exp_x) * 0.5
|
||||
|
||||
|
||||
# a Triton implementation of the most used activations
|
||||
# See for instance http://arxiv.org/abs/1606.08415 for an overview
|
||||
|
||||
|
||||
# ReLU
|
||||
@triton.jit
|
||||
def relu(x):
|
||||
"""
|
||||
ReLU_ activation function
|
||||
|
||||
.. _ReLU: https://pytorch.org/docs/stable/generated/torch.nn.ReLU.html
|
||||
"""
|
||||
return tl.where(x >= 0, x, 0.0)
|
||||
|
||||
|
||||
@triton.jit
|
||||
def squared_relu(x):
|
||||
"""
|
||||
Squared ReLU activation, as proposed in the Primer_ paper.
|
||||
|
||||
.. _Primer: https://arxiv.org/abs/2109.08668
|
||||
"""
|
||||
x_sq = x * x
|
||||
return tl.where(x > 0.0, x_sq, 0.0)
|
||||
|
||||
|
||||
@triton.jit
|
||||
def star_relu(x):
|
||||
"""
|
||||
Star ReLU activation, as proposed in the "MetaFormer Baselines for Vision"_ paper.
|
||||
|
||||
.. _ "MetaFormer Baselines for Vision": https://arxiv.org/pdf/2210.13452.pdf
|
||||
"""
|
||||
x_sq = x * x
|
||||
return 0.8944 * tl.where(x > 0.0, x_sq, 0.0) - 0.4472
|
||||
|
||||
|
||||
# Leaky ReLU
|
||||
@triton.jit
|
||||
def leaky_relu(x):
|
||||
"""
|
||||
LeakyReLU_ activation
|
||||
|
||||
.. _LeakyReLU: https://pytorch.org/docs/stable/generated/torch.nn.LeakyReLU.html
|
||||
"""
|
||||
return tl.where(x >= 0.0, x, 0.01 * x)
|
||||
|
||||
|
||||
@triton.jit
|
||||
def gelu(x):
|
||||
"""
|
||||
GeLU_ activation - Gaussian error linear unit
|
||||
|
||||
.. _GeLU: https://arxiv.org/pdf/1606.08415.pdf
|
||||
"""
|
||||
return 0.5 * x * (1 + tanh(_kAlpha * (x + 0.044715 * x * x * x)))
|
||||
|
||||
|
||||
@triton.jit
|
||||
def smelu(x):
|
||||
"""
|
||||
SmeLU_ activation - Smooth ReLU with beta=2.0
|
||||
|
||||
.. _SmeLU: https://arxiv.org/pdf/2202.06499.pdf
|
||||
"""
|
||||
beta = 2.0
|
||||
|
||||
relu = tl.where(x >= beta, x, 0.0)
|
||||
return tl.where(tl.abs(x) <= beta, (x + beta) * (x + beta) / (4.0 * beta), relu)
|
||||
|
||||
|
||||
@triton.jit
|
||||
def silu(x):
|
||||
return x * tl.sigmoid(x)
|
||||
|
||||
|
||||
@autotune(
|
||||
configs=[
|
||||
triton.Config(
|
||||
{"BLOCK_SIZE_M": 64, "BLOCK_SIZE_N": 256, "BLOCK_SIZE_K": 32, "GROUP_SIZE_M": 8}, num_stages=4, num_warps=4
|
||||
),
|
||||
triton.Config(
|
||||
{"BLOCK_SIZE_M": 128, "BLOCK_SIZE_N": 128, "BLOCK_SIZE_K": 32, "GROUP_SIZE_M": 8}, num_stages=4, num_warps=4
|
||||
),
|
||||
triton.Config(
|
||||
{"BLOCK_SIZE_M": 64, "BLOCK_SIZE_N": 128, "BLOCK_SIZE_K": 32, "GROUP_SIZE_M": 8}, num_stages=4, num_warps=4
|
||||
),
|
||||
triton.Config(
|
||||
{"BLOCK_SIZE_M": 128, "BLOCK_SIZE_N": 32, "BLOCK_SIZE_K": 32, "GROUP_SIZE_M": 8}, num_stages=4, num_warps=4
|
||||
),
|
||||
triton.Config(
|
||||
{"BLOCK_SIZE_M": 64, "BLOCK_SIZE_N": 64, "BLOCK_SIZE_K": 32, "GROUP_SIZE_M": 8}, num_stages=4, num_warps=4
|
||||
),
|
||||
triton.Config(
|
||||
{"BLOCK_SIZE_M": 64, "BLOCK_SIZE_N": 128, "BLOCK_SIZE_K": 32, "GROUP_SIZE_M": 8}, num_stages=2, num_warps=8
|
||||
),
|
||||
triton.Config(
|
||||
{"BLOCK_SIZE_M": 64, "BLOCK_SIZE_N": 64, "BLOCK_SIZE_K": 64, "GROUP_SIZE_M": 8}, num_stages=3, num_warps=8
|
||||
),
|
||||
triton.Config(
|
||||
{"BLOCK_SIZE_M": 32, "BLOCK_SIZE_N": 32, "BLOCK_SIZE_K": 128, "GROUP_SIZE_M": 8}, num_stages=2, num_warps=4
|
||||
),
|
||||
],
|
||||
key=["M", "N", "K"],
|
||||
nearest_power_of_two=True,
|
||||
prune_configs_by={
|
||||
"early_config_prune": matmul248_kernel_config_pruner,
|
||||
"perf_model": None,
|
||||
"top_k": None,
|
||||
},
|
||||
)
|
||||
@triton.jit
|
||||
def cai_gptq_matmul_248_kernel(
|
||||
a_ptr,
|
||||
b_ptr,
|
||||
c_ptr,
|
||||
scales_ptr,
|
||||
zeros_ptr,
|
||||
bias_ptr,
|
||||
residual_ptr,
|
||||
M,
|
||||
N,
|
||||
K,
|
||||
bits,
|
||||
maxq,
|
||||
gptq_group_size,
|
||||
stride_am,
|
||||
stride_ak,
|
||||
stride_bk,
|
||||
stride_bn,
|
||||
stride_cm,
|
||||
stride_cn,
|
||||
stride_scales,
|
||||
stride_zeros,
|
||||
QKV_FUSED: tl.constexpr,
|
||||
ADD_BIAS: tl.constexpr,
|
||||
ADD_RESIDUAL: tl.constexpr,
|
||||
ACT_TYPE: tl.constexpr,
|
||||
BLOCK_SIZE_M: tl.constexpr,
|
||||
BLOCK_SIZE_N: tl.constexpr,
|
||||
BLOCK_SIZE_K: tl.constexpr,
|
||||
GROUP_SIZE_M: tl.constexpr,
|
||||
):
|
||||
"""
|
||||
Compute the matrix multiplication C = A x B.
|
||||
A is of shape (M, K) float16
|
||||
B is of shape (K//8, N) int32
|
||||
C is of shape (M, N) float16
|
||||
scales is of shape (G, N) float16
|
||||
zeros is of shape (G, N) float16
|
||||
"""
|
||||
infearure_per_bits = 32 // bits
|
||||
|
||||
pid = tl.program_id(axis=0)
|
||||
NK = K
|
||||
|
||||
num_pid_m = tl.cdiv(M, BLOCK_SIZE_M)
|
||||
num_pid_n = tl.cdiv(N, BLOCK_SIZE_N)
|
||||
num_pid_k = tl.cdiv(NK, BLOCK_SIZE_K)
|
||||
qkv_offset = pid // (num_pid_m * num_pid_n)
|
||||
pid = pid % (num_pid_m * num_pid_n)
|
||||
num_pid_in_group = GROUP_SIZE_M * num_pid_n
|
||||
group_id = pid // num_pid_in_group
|
||||
first_pid_m = group_id * GROUP_SIZE_M
|
||||
group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M)
|
||||
pid_m = first_pid_m + (pid % group_size_m)
|
||||
pid_n = (pid % num_pid_in_group) // group_size_m
|
||||
|
||||
offs_am = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
|
||||
offs_bn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
|
||||
offs_k = tl.arange(0, BLOCK_SIZE_K)
|
||||
# offs_bk = offs_k + qkv_offset * NK
|
||||
a_ptrs = a_ptr + (offs_am[:, None] * stride_am + offs_k[None, :] * stride_ak) # (BLOCK_SIZE_M, BLOCK_SIZE_K)
|
||||
|
||||
a_mask = offs_am[:, None] < M
|
||||
# b_ptrs is set up such that it repeats elements along the K axis 8 times
|
||||
b_ptrs = (
|
||||
b_ptr
|
||||
+ qkv_offset * N * NK // infearure_per_bits
|
||||
+ ((offs_k[:, None] // infearure_per_bits) * stride_bk + offs_bn[None, :] * stride_bn)
|
||||
) # (BLOCK_SIZE_K, BLOCK_SIZE_N)
|
||||
# g_ptrs = g_ptr + offs_k
|
||||
# shifter is used to extract the N bits of each element in the 32-bit word from B
|
||||
scales_ptrs = scales_ptr + qkv_offset * NK * N // gptq_group_size + offs_bn[None, :]
|
||||
zeros_ptrs = (
|
||||
zeros_ptr
|
||||
+ qkv_offset * NK * N // gptq_group_size // infearure_per_bits
|
||||
+ (offs_bn[None, :] // infearure_per_bits)
|
||||
)
|
||||
|
||||
shifter = (offs_k % infearure_per_bits) * bits
|
||||
zeros_shifter = (offs_bn % infearure_per_bits) * bits
|
||||
accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
|
||||
g_idx_base = tl.arange(0, BLOCK_SIZE_K)
|
||||
g_idx_base = g_idx_base // gptq_group_size
|
||||
g_idx = g_idx_base
|
||||
# tl.device_print("gidx, ", g_idx)
|
||||
|
||||
scales = tl.load(scales_ptrs + g_idx[:, None] * stride_scales) # (BLOCK_SIZE_K, BLOCK_SIZE_N,)
|
||||
zeros = tl.load(zeros_ptrs + g_idx[:, None] * stride_zeros) # (BLOCK_SIZE_K, BLOCK_SIZE_N,)
|
||||
zeros = (zeros >> zeros_shifter[None, :]) & maxq
|
||||
zeros = zeros + 1
|
||||
|
||||
for k in range(0, num_pid_k):
|
||||
# g_idx = tl.load(g_ptrs)
|
||||
# if (k + 1) * BLOCK_SIZE_K > currend_group_end:
|
||||
scales = tl.load(scales_ptrs + g_idx[:, None] * stride_scales) # (BLOCK_SIZE_K, BLOCK_SIZE_N,)
|
||||
zeros = tl.load(zeros_ptrs + g_idx[:, None] * stride_zeros) # (BLOCK_SIZE_K, BLOCK_SIZE_N,)
|
||||
zeros = (zeros >> zeros_shifter[None, :]) & maxq
|
||||
zeros = zeros + 1
|
||||
# Fetch scales and zeros; these are per-outfeature and thus reused in the inner loop
|
||||
a = tl.load(a_ptrs, mask=a_mask, other=0.0) # (BLOCK_SIZE_M, BLOCK_SIZE_K)
|
||||
b = tl.load(b_ptrs) # (BLOCK_SIZE_K, BLOCK_SIZE_N), but repeated
|
||||
# Now we need to unpack b (which is N-bit values) into 32-bit values
|
||||
b = (b >> shifter[:, None]) & maxq # Extract the N-bit values
|
||||
b = (b - zeros).to(tl.float16) * scales # Scale and shift
|
||||
accumulator += tl.dot(a, b)
|
||||
|
||||
a_ptrs += BLOCK_SIZE_K
|
||||
b_ptrs += (BLOCK_SIZE_K // infearure_per_bits) * stride_bk
|
||||
g_idx = g_idx_base + ((k + 1) * BLOCK_SIZE_K) // gptq_group_size
|
||||
# if (k + 2) * BLOCK_SIZE_K > currend_group_end:
|
||||
|
||||
c_ptrs = c_ptr + qkv_offset * M * N + stride_cm * offs_am[:, None] + stride_cn * offs_bn[None, :]
|
||||
c_mask = (offs_am[:, None] < M) & (offs_bn[None, :] < N)
|
||||
|
||||
if ADD_BIAS:
|
||||
bias_mask = offs_bn < N
|
||||
offs_bn += qkv_offset * N
|
||||
bias_ptrs = bias_ptr + stride_cn * offs_bn
|
||||
bias = tl.load(bias_ptrs, mask=bias_mask, other=0.0) # (BLOCK_SIZE_M, BLOCK_SIZE_K)
|
||||
accumulator += bias[None, :]
|
||||
|
||||
if ACT_TYPE == 1:
|
||||
accumulator = relu(accumulator)
|
||||
elif ACT_TYPE == 2:
|
||||
accumulator = gelu(accumulator)
|
||||
elif ACT_TYPE == 3:
|
||||
accumulator = silu(accumulator)
|
||||
|
||||
if ADD_RESIDUAL:
|
||||
residual_ptrs = residual_ptr + stride_cm * offs_am[:, None] + stride_cn * offs_bn[None, :]
|
||||
res = tl.load(residual_ptrs, mask=c_mask, other=0.0)
|
||||
accumulator += res
|
||||
|
||||
tl.store(c_ptrs, accumulator, mask=c_mask)
|
||||
|
||||
|
||||
# Adapted from AutoGPTQ auto_gptq: https://github.com/PanQiWei/AutoGPTQ
|
||||
@autotune(
|
||||
configs=[
|
||||
triton.Config(
|
||||
{"BLOCK_SIZE_M": 64, "BLOCK_SIZE_N": 256, "BLOCK_SIZE_K": 32, "GROUP_SIZE_M": 8}, num_stages=4, num_warps=4
|
||||
),
|
||||
triton.Config(
|
||||
{"BLOCK_SIZE_M": 128, "BLOCK_SIZE_N": 128, "BLOCK_SIZE_K": 32, "GROUP_SIZE_M": 8}, num_stages=4, num_warps=4
|
||||
),
|
||||
triton.Config(
|
||||
{"BLOCK_SIZE_M": 64, "BLOCK_SIZE_N": 128, "BLOCK_SIZE_K": 32, "GROUP_SIZE_M": 8}, num_stages=4, num_warps=4
|
||||
),
|
||||
triton.Config(
|
||||
{"BLOCK_SIZE_M": 128, "BLOCK_SIZE_N": 32, "BLOCK_SIZE_K": 32, "GROUP_SIZE_M": 8}, num_stages=4, num_warps=4
|
||||
),
|
||||
triton.Config(
|
||||
{"BLOCK_SIZE_M": 64, "BLOCK_SIZE_N": 64, "BLOCK_SIZE_K": 32, "GROUP_SIZE_M": 8}, num_stages=4, num_warps=4
|
||||
),
|
||||
triton.Config(
|
||||
{"BLOCK_SIZE_M": 64, "BLOCK_SIZE_N": 128, "BLOCK_SIZE_K": 32, "GROUP_SIZE_M": 8}, num_stages=2, num_warps=8
|
||||
),
|
||||
triton.Config(
|
||||
{"BLOCK_SIZE_M": 64, "BLOCK_SIZE_N": 64, "BLOCK_SIZE_K": 64, "GROUP_SIZE_M": 8}, num_stages=3, num_warps=8
|
||||
),
|
||||
triton.Config(
|
||||
{"BLOCK_SIZE_M": 32, "BLOCK_SIZE_N": 32, "BLOCK_SIZE_K": 128, "GROUP_SIZE_M": 8}, num_stages=2, num_warps=4
|
||||
),
|
||||
],
|
||||
key=["M", "N", "K"],
|
||||
nearest_power_of_two=True,
|
||||
prune_configs_by={
|
||||
"early_config_prune": matmul248_kernel_config_pruner,
|
||||
"perf_model": None,
|
||||
"top_k": None,
|
||||
},
|
||||
)
|
||||
@triton.jit
|
||||
def cai_gptq_idx_matmul_248_kernel(
|
||||
a_ptr,
|
||||
b_ptr,
|
||||
c_ptr,
|
||||
scales_ptr,
|
||||
zeros_ptr,
|
||||
idx_ptr,
|
||||
bias_ptr,
|
||||
residual_ptr,
|
||||
M,
|
||||
N,
|
||||
K,
|
||||
bits,
|
||||
maxq,
|
||||
gptq_group_size,
|
||||
stride_am,
|
||||
stride_ak,
|
||||
stride_bk,
|
||||
stride_bn,
|
||||
stride_cm,
|
||||
stride_cn,
|
||||
stride_scales,
|
||||
stride_zeros,
|
||||
QKV_FUSED: tl.constexpr,
|
||||
ADD_BIAS: tl.constexpr,
|
||||
ADD_RESIDUAL: tl.constexpr,
|
||||
ACT_TYPE: tl.constexpr,
|
||||
BLOCK_SIZE_M: tl.constexpr,
|
||||
BLOCK_SIZE_N: tl.constexpr,
|
||||
BLOCK_SIZE_K: tl.constexpr,
|
||||
GROUP_SIZE_M: tl.constexpr,
|
||||
):
|
||||
"""
|
||||
Compute the matrix multiplication C = A x B.
|
||||
A is of shape (M, K) float16
|
||||
B is of shape (K//8, N) int32
|
||||
C is of shape (M, N) float16
|
||||
scales is of shape (G, N) float16
|
||||
zeros is of shape (G, N) float16
|
||||
"""
|
||||
infearure_per_bits = 32 // bits
|
||||
|
||||
pid = tl.program_id(axis=0)
|
||||
NK = K
|
||||
|
||||
# if QKV_FUSED:
|
||||
# NK = K//3
|
||||
# else:
|
||||
# NK = K
|
||||
# NK = K
|
||||
|
||||
num_pid_m = tl.cdiv(M, BLOCK_SIZE_M)
|
||||
num_pid_n = tl.cdiv(N, BLOCK_SIZE_N)
|
||||
num_pid_k = tl.cdiv(NK, BLOCK_SIZE_K)
|
||||
qkv_offset = pid // (num_pid_m * num_pid_n)
|
||||
pid = pid % (num_pid_m * num_pid_n)
|
||||
num_pid_in_group = GROUP_SIZE_M * num_pid_n
|
||||
group_id = pid // num_pid_in_group
|
||||
first_pid_m = group_id * GROUP_SIZE_M
|
||||
group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M)
|
||||
pid_m = first_pid_m + (pid % group_size_m)
|
||||
pid_n = (pid % num_pid_in_group) // group_size_m
|
||||
|
||||
offs_am = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
|
||||
offs_bn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
|
||||
offs_k = tl.arange(0, BLOCK_SIZE_K)
|
||||
# offs_bk = offs_k + qkv_offset * NK
|
||||
a_ptrs = a_ptr + (offs_am[:, None] * stride_am + offs_k[None, :] * stride_ak) # (BLOCK_SIZE_M, BLOCK_SIZE_K)
|
||||
|
||||
a_mask = offs_am[:, None] < M
|
||||
# b_ptrs is set up such that it repeats elements along the K axis 8 times
|
||||
b_ptrs = (
|
||||
b_ptr
|
||||
+ qkv_offset * N * NK // infearure_per_bits
|
||||
+ ((offs_k[:, None] // infearure_per_bits) * stride_bk + offs_bn[None, :] * stride_bn)
|
||||
) # (BLOCK_SIZE_K, BLOCK_SIZE_N)
|
||||
# g_ptrs = g_ptr + offs_k
|
||||
# shifter is used to extract the N bits of each element in the 32-bit word from B
|
||||
scales_ptrs = scales_ptr + qkv_offset * NK * N // gptq_group_size + offs_bn[None, :]
|
||||
zeros_ptrs = (
|
||||
zeros_ptr
|
||||
+ qkv_offset * NK * N // gptq_group_size // infearure_per_bits
|
||||
+ (offs_bn[None, :] // infearure_per_bits)
|
||||
)
|
||||
|
||||
shifter = (offs_k % infearure_per_bits) * bits
|
||||
zeros_shifter = (offs_bn % infearure_per_bits) * bits
|
||||
accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
|
||||
g_ptrs = idx_ptr + offs_k
|
||||
g_idx = tl.load(g_ptrs)
|
||||
# tl.device_print("gidx, ", g_idx)
|
||||
zeros_ptrs = zeros_ptr + (offs_bn[None, :] // infearure_per_bits)
|
||||
|
||||
scales = tl.load(scales_ptrs + g_idx[:, None] * stride_scales) # (BLOCK_SIZE_K, BLOCK_SIZE_N,)
|
||||
|
||||
for k in range(0, num_pid_k):
|
||||
g_idx = tl.load(g_ptrs)
|
||||
scales = tl.load(scales_ptrs + g_idx[:, None] * stride_scales) # (BLOCK_SIZE_K, BLOCK_SIZE_N,)
|
||||
zeros = tl.load(zeros_ptrs + g_idx[:, None] * stride_zeros) # (BLOCK_SIZE_K, BLOCK_SIZE_N,)
|
||||
|
||||
zeros = (zeros >> zeros_shifter[None, :]) & maxq
|
||||
zeros = zeros + 1
|
||||
|
||||
# Fetch scales and zeros; these are per-outfeature and thus reused in the inner loop
|
||||
a = tl.load(a_ptrs, mask=a_mask, other=0.0) # (BLOCK_SIZE_M, BLOCK_SIZE_K)
|
||||
b = tl.load(b_ptrs) # (BLOCK_SIZE_K, BLOCK_SIZE_N), but repeated
|
||||
# Now we need to unpack b (which is N-bit values) into 32-bit values
|
||||
b = (b >> shifter[:, None]) & maxq # Extract the N-bit values
|
||||
b = (b - zeros).to(tl.float16) * scales # Scale and shift
|
||||
accumulator += tl.dot(a, b)
|
||||
|
||||
a_ptrs += BLOCK_SIZE_K
|
||||
b_ptrs += (BLOCK_SIZE_K // infearure_per_bits) * stride_bk
|
||||
g_ptrs += BLOCK_SIZE_K
|
||||
|
||||
c_ptrs = c_ptr + qkv_offset * M * N + stride_cm * offs_am[:, None] + stride_cn * offs_bn[None, :]
|
||||
c_mask = (offs_am[:, None] < M) & (offs_bn[None, :] < N)
|
||||
|
||||
if ADD_BIAS:
|
||||
bias_mask = offs_bn < N
|
||||
offs_bn += qkv_offset * N
|
||||
bias_ptrs = bias_ptr + stride_cn * offs_bn
|
||||
bias = tl.load(bias_ptrs, mask=bias_mask, other=0.0) # (BLOCK_SIZE_M, BLOCK_SIZE_K)
|
||||
accumulator += bias[None, :]
|
||||
|
||||
if ACT_TYPE == 1:
|
||||
accumulator = relu(accumulator)
|
||||
elif ACT_TYPE == 2:
|
||||
accumulator = gelu(accumulator)
|
||||
elif ACT_TYPE == 3:
|
||||
accumulator = silu(accumulator)
|
||||
|
||||
if ADD_RESIDUAL:
|
||||
residual_ptrs = residual_ptr + stride_cm * offs_am[:, None] + stride_cn * offs_bn[None, :]
|
||||
res = tl.load(residual_ptrs, mask=c_mask, other=0.0)
|
||||
accumulator += res
|
||||
|
||||
tl.store(c_ptrs, accumulator, mask=c_mask)
|
||||
|
||||
|
||||
def gptq_fused_linear_triton(
|
||||
input,
|
||||
qweight,
|
||||
scales,
|
||||
qzeros,
|
||||
bias,
|
||||
residual,
|
||||
bits,
|
||||
maxq,
|
||||
gptq_group_size,
|
||||
qkv_fused,
|
||||
add_bias,
|
||||
add_residual,
|
||||
g_idx=None,
|
||||
act_type=0,
|
||||
):
|
||||
# print("gptq fused ", qkv_fused, add_bias, add_residual)
|
||||
assert input.is_cuda, "input is not in cuda"
|
||||
assert qweight.is_cuda, "qweight is not in cuda"
|
||||
assert scales.is_cuda, "scales is not in cuda"
|
||||
assert qzeros.is_cuda, "qzeros is not in cuda"
|
||||
|
||||
with torch.cuda.device(input.device):
|
||||
if qkv_fused:
|
||||
grid = lambda META: (
|
||||
triton.cdiv(input.shape[0], META["BLOCK_SIZE_M"])
|
||||
* triton.cdiv(qweight.shape[1], META["BLOCK_SIZE_N"])
|
||||
* 3,
|
||||
)
|
||||
output = torch.empty((input.shape[0] * 3, qweight.shape[1]), device=input.device, dtype=torch.float16)
|
||||
else:
|
||||
grid = lambda META: (
|
||||
triton.cdiv(input.shape[0], META["BLOCK_SIZE_M"]) * triton.cdiv(qweight.shape[1], META["BLOCK_SIZE_N"]),
|
||||
)
|
||||
output = torch.empty((input.shape[0], qweight.shape[1]), device=input.device, dtype=torch.float16)
|
||||
# print("dtype, ", qweight.dtype, output.dtype, scales.dtype, qzeros.dtype, bias.dtype, residual.dtype)
|
||||
if g_idx is None:
|
||||
cai_gptq_matmul_248_kernel[grid](
|
||||
input,
|
||||
qweight,
|
||||
output,
|
||||
scales,
|
||||
qzeros,
|
||||
bias,
|
||||
residual,
|
||||
input.shape[0],
|
||||
qweight.shape[1],
|
||||
input.shape[1],
|
||||
bits,
|
||||
maxq,
|
||||
gptq_group_size,
|
||||
input.stride(0),
|
||||
input.stride(1),
|
||||
qweight.stride(0),
|
||||
qweight.stride(1),
|
||||
output.stride(0),
|
||||
output.stride(1),
|
||||
scales.stride(0),
|
||||
qzeros.stride(0),
|
||||
QKV_FUSED=qkv_fused,
|
||||
ADD_BIAS=add_bias,
|
||||
ADD_RESIDUAL=add_residual,
|
||||
ACT_TYPE=act_type,
|
||||
)
|
||||
else:
|
||||
cai_gptq_idx_matmul_248_kernel[grid](
|
||||
input,
|
||||
qweight,
|
||||
output,
|
||||
scales,
|
||||
qzeros,
|
||||
g_idx,
|
||||
bias,
|
||||
residual,
|
||||
input.shape[0],
|
||||
qweight.shape[1],
|
||||
input.shape[1],
|
||||
bits,
|
||||
maxq,
|
||||
gptq_group_size,
|
||||
input.stride(0),
|
||||
input.stride(1),
|
||||
qweight.stride(0),
|
||||
qweight.stride(1),
|
||||
output.stride(0),
|
||||
output.stride(1),
|
||||
scales.stride(0),
|
||||
qzeros.stride(0),
|
||||
QKV_FUSED=qkv_fused,
|
||||
ADD_BIAS=add_bias,
|
||||
ADD_RESIDUAL=add_residual,
|
||||
ACT_TYPE=act_type,
|
||||
)
|
||||
if qkv_fused:
|
||||
return output.view(3, input.shape[0], qweight.shape[1])
|
||||
else:
|
||||
return output
|
Loading…
Reference in new issue