mirror of https://github.com/hpcaitech/ColossalAI
Merge branch 'main' into exp/mixtral
commit
ce1cff26bd
|
@ -1,3 +1,2 @@
|
|||
1.12.0-11.3.0
|
||||
1.13.0-11.6.0
|
||||
2.0.0-11.7.0
|
||||
2.1.0-11.8.0
|
||||
|
|
|
@ -30,7 +30,7 @@ jobs:
|
|||
github.event.repository.full_name == 'hpcaitech/ColossalAI'
|
||||
runs-on: [self-hosted, gpu]
|
||||
container:
|
||||
image: hpcaitech/pytorch-cuda:1.12.0-11.3.0
|
||||
image: hpcaitech/pytorch-cuda:2.0.0-11.7.0
|
||||
options: --rm
|
||||
timeout-minutes: 5
|
||||
defaults:
|
||||
|
@ -54,7 +54,7 @@ jobs:
|
|||
github.event.pull_request.base.repo.full_name == 'hpcaitech/ColossalAI'
|
||||
runs-on: [self-hosted, gpu]
|
||||
container:
|
||||
image: hpcaitech/pytorch-cuda:1.12.0-11.3.0
|
||||
image: hpcaitech/pytorch-cuda:2.0.0-11.7.0
|
||||
options: --rm
|
||||
timeout-minutes: 5
|
||||
defaults:
|
||||
|
@ -140,7 +140,7 @@ jobs:
|
|||
if: needs.detect.outputs.anyLibraryFileChanged == 'true'
|
||||
runs-on: [self-hosted, gpu]
|
||||
container:
|
||||
image: hpcaitech/pytorch-cuda:1.12.0-11.3.0
|
||||
image: hpcaitech/pytorch-cuda:2.0.0-11.7.0
|
||||
options: --gpus all --rm -v /data/scratch/cifar-10:/data/scratch/cifar-10 -v /data/scratch/llama-tiny:/data/scratch/llama-tiny
|
||||
timeout-minutes: 60
|
||||
defaults:
|
||||
|
@ -268,7 +268,7 @@ jobs:
|
|||
github.event.pull_request.base.repo.full_name == 'hpcaitech/ColossalAI'
|
||||
runs-on: [self-hosted, gpu]
|
||||
container:
|
||||
image: hpcaitech/pytorch-cuda:1.12.0-11.3.0
|
||||
image: hpcaitech/pytorch-cuda:2.0.0-11.7.0
|
||||
options: --rm
|
||||
timeout-minutes: 5
|
||||
defaults:
|
||||
|
@ -299,7 +299,7 @@ jobs:
|
|||
github.event.repository.full_name == 'hpcaitech/ColossalAI'
|
||||
runs-on: [self-hosted, gpu]
|
||||
container:
|
||||
image: hpcaitech/pytorch-cuda:1.12.0-11.3.0
|
||||
image: hpcaitech/pytorch-cuda:2.0.0-11.7.0
|
||||
options: --rm
|
||||
timeout-minutes: 5
|
||||
defaults:
|
||||
|
|
|
@ -12,7 +12,7 @@ jobs:
|
|||
if: github.repository == 'hpcaitech/ColossalAI'
|
||||
runs-on: [self-hosted, 8-gpu]
|
||||
container:
|
||||
image: hpcaitech/pytorch-cuda:1.12.0-11.3.0
|
||||
image: hpcaitech/pytorch-cuda:2.0.0-11.7.0
|
||||
options: --gpus all --rm -v /data/scratch/cifar-10:/data/scratch/cifar-10 -v /data/scratch/llama-tiny:/data/scratch/llama-tiny
|
||||
timeout-minutes: 40
|
||||
steps:
|
||||
|
|
|
@ -56,7 +56,7 @@ jobs:
|
|||
needs: detect-changed-doc
|
||||
runs-on: [self-hosted, gpu]
|
||||
container:
|
||||
image: hpcaitech/pytorch-cuda:1.12.0-11.3.0
|
||||
image: hpcaitech/pytorch-cuda:2.0.0-11.7.0
|
||||
options: --gpus all --rm
|
||||
timeout-minutes: 20
|
||||
defaults:
|
||||
|
|
|
@ -12,7 +12,7 @@ jobs:
|
|||
name: Test the changed Doc
|
||||
runs-on: [self-hosted, gpu]
|
||||
container:
|
||||
image: hpcaitech/pytorch-cuda:1.12.0-11.3.0
|
||||
image: hpcaitech/pytorch-cuda:2.0.0-11.7.0
|
||||
options: --gpus all --rm
|
||||
timeout-minutes: 60
|
||||
steps:
|
||||
|
|
|
@ -45,7 +45,7 @@ jobs:
|
|||
fail-fast: false
|
||||
matrix: ${{fromJson(needs.manual_check_matrix_preparation.outputs.matrix)}}
|
||||
container:
|
||||
image: hpcaitech/pytorch-cuda:1.12.0-11.3.0
|
||||
image: hpcaitech/pytorch-cuda:2.0.0-11.7.0
|
||||
options: --gpus all --rm -v /data/scratch/examples-data:/data/
|
||||
timeout-minutes: 10
|
||||
steps:
|
||||
|
|
|
@ -77,7 +77,7 @@ jobs:
|
|||
fail-fast: false
|
||||
matrix: ${{fromJson(needs.detect-changed-example.outputs.matrix)}}
|
||||
container:
|
||||
image: hpcaitech/pytorch-cuda:1.12.0-11.3.0
|
||||
image: hpcaitech/pytorch-cuda:2.0.0-11.7.0
|
||||
options: --gpus all --rm -v /data/scratch/examples-data:/data/
|
||||
timeout-minutes: 20
|
||||
concurrency:
|
||||
|
|
|
@ -34,7 +34,7 @@ jobs:
|
|||
fail-fast: false
|
||||
matrix: ${{fromJson(needs.matrix_preparation.outputs.matrix)}}
|
||||
container:
|
||||
image: hpcaitech/pytorch-cuda:1.12.0-11.3.0
|
||||
image: hpcaitech/pytorch-cuda:2.0.0-11.7.0
|
||||
timeout-minutes: 10
|
||||
steps:
|
||||
- name: 📚 Checkout
|
||||
|
|
|
@ -372,7 +372,7 @@ Please visit our [documentation](https://www.colossalai.org/) and [examples](htt
|
|||
## Installation
|
||||
|
||||
Requirements:
|
||||
- PyTorch >= 1.11 (PyTorch 2.x in progress)
|
||||
- PyTorch >= 1.11 and PyTorch <= 2.1
|
||||
- Python >= 3.7
|
||||
- CUDA >= 11.0
|
||||
- [NVIDIA GPU Compute Capability](https://developer.nvidia.com/cuda-gpus) >= 7.0 (V100/RTX20 and higher)
|
||||
|
|
|
@ -461,17 +461,19 @@ Thanks so much to all of our amazing contributors!
|
|||
|
||||
Coati is developed by ColossalAI Team:
|
||||
|
||||
- [Fazzie](https://fazzie-key.cool/about/index.html)
|
||||
- [FrankLeeeee](https://github.com/FrankLeeeee)
|
||||
- [BlueRum](https://github.com/ht-zhou)
|
||||
- [ver217](https://github.com/ver217)
|
||||
- [ofey404](https://github.com/ofey404)
|
||||
- [Wenhao Chen](https://github.com/CWHer)
|
||||
- [ver217](https://github.com/ver217) Leading the project while contributing to the main framework.
|
||||
- [FrankLeeeee](https://github.com/FrankLeeeee) Providing ML infra support and also taking charge of both front-end and back-end development.
|
||||
- [htzhou](https://github.com/ht-zhou) Contributing to the algorithm and development for RM and PPO training.
|
||||
- [Fazzie](https://fazzie-key.cool/about/index.html) Contributing to the algorithm and development for SFT.
|
||||
- [ofey404](https://github.com/ofey404) Contributing to both front-end and back-end development.
|
||||
- [Wenhao Chen](https://github.com/CWHer) Contributing to subsequent code enhancements and performance improvements.
|
||||
|
||||
The PhD student from [(HPC-AI) Lab](https://ai.comp.nus.edu.sg/) also contributed a lot to this project.
|
||||
- [Zangwei Zheng](https://github.com/zhengzangw)
|
||||
- [Xue Fuzhao](https://github.com/XueFuzhao)
|
||||
|
||||
We also appreciate the valuable suggestions provided by [Jian Hu](https://github.com/hijkzzz) regarding the convergence of the PPO algorithm.
|
||||
|
||||
## Citations
|
||||
|
||||
```bibtex
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
import os
|
||||
from typing import Dict, List
|
||||
from typing import Dict, List, Union
|
||||
|
||||
import colossal_eval.evaluate.dataset_evaluator.metrics as metric_helper
|
||||
import numpy as np
|
||||
|
@ -58,12 +58,12 @@ class DatasetEvaluator(object):
|
|||
[sample["output"] for sample in self.data[category]["data"]]
|
||||
|
||||
flag = False
|
||||
softmaxs = []
|
||||
logits = []
|
||||
for i, sample in enumerate(self.data[category]["data"]):
|
||||
if np.any(np.isnan(np.array(list(sample["softmax_over_choices"].values())))):
|
||||
if np.any(np.isnan(np.array(list(sample["logits_over_choices"].values())))):
|
||||
if not flag:
|
||||
print(
|
||||
f"NaN in the softmax, switch to exact match for category {category} in dataset {self.dataset_name} in model {self.model_name}."
|
||||
f"NaN in the logits, switch to exact match for category {category} in dataset {self.dataset_name} in model {self.model_name}."
|
||||
)
|
||||
flag = True
|
||||
score = 0
|
||||
|
@ -79,13 +79,13 @@ class DatasetEvaluator(object):
|
|||
score,
|
||||
metric_helper.accuracy_by_options(sample["input"], sample["output"], ref),
|
||||
)
|
||||
softmaxs.append(references[i] if score == 1 else -1)
|
||||
logits.append(references[i] if score == 1 else -1)
|
||||
else:
|
||||
softmaxs.append(np.argmax(np.array(list(sample["softmax_over_choices"].values()))))
|
||||
logits.append(np.argmax(np.array(list(sample["logits_over_choices"].values()))))
|
||||
|
||||
references = np.array(references)
|
||||
softmaxs = np.array(softmaxs)
|
||||
scores = np.sum(references == softmaxs) / len(self.data[category]["data"]) * 100
|
||||
logits = np.array(logits)
|
||||
scores = np.sum(references == logits) / len(self.data[category]["data"]) * 100
|
||||
|
||||
self.evaluation_results[metric][category] = (scores, len(self.data[category]["data"]))
|
||||
self.evaluation_results[metric]["ALL"] += scores * weight
|
||||
|
@ -105,12 +105,12 @@ class DatasetEvaluator(object):
|
|||
predictions = [sample["output"] for sample in self.data[category]["data"]]
|
||||
|
||||
flag = False
|
||||
softmaxs = []
|
||||
logits = []
|
||||
for i, sample in enumerate(self.data[category]["data"]):
|
||||
if np.any(np.isnan(np.array(list(sample["softmax_over_choices"].values())))):
|
||||
if np.any(np.isnan(np.array(list(sample["logits_over_choices"].values())))):
|
||||
if not flag:
|
||||
print(
|
||||
f"NaN in the softmax, switch to exact match for category {category} in dataset {self.dataset_name} in model {self.model_name}."
|
||||
f"NaN in the logits, switch to exact match for category {category} in dataset {self.dataset_name} in model {self.model_name}."
|
||||
)
|
||||
flag = True
|
||||
score = 0
|
||||
|
@ -121,16 +121,14 @@ class DatasetEvaluator(object):
|
|||
sample["output"], ref, all_classes=self.data[category]["inference_kwargs"]["all_classes"]
|
||||
),
|
||||
)
|
||||
softmaxs.append(references[i] if score == 1 else -1)
|
||||
logits.append(references[i] if score == 1 else -1)
|
||||
else:
|
||||
softmaxs.append(np.argmax(np.array(list(sample["softmax_over_choices"].values()))))
|
||||
logits.append(np.argmax(np.array(list(sample["logits_over_choices"].values()))))
|
||||
|
||||
metric_method = eval("metric_helper." + metric)
|
||||
|
||||
total_score = 0.0
|
||||
for prediction, reference, references_label, softmax in zip(
|
||||
predictions, references, references_labels, softmaxs
|
||||
):
|
||||
for prediction, reference, references_label, softmax in zip(predictions, references, references_labels, logits):
|
||||
score = 0.0
|
||||
|
||||
for ref in reference:
|
||||
|
@ -281,7 +279,9 @@ class DatasetEvaluator(object):
|
|||
|
||||
return self.evaluation_results
|
||||
|
||||
def get_evaluation_results(self, data: List[Dict], dataset_name: str, model_name: str, metrics: List[str]):
|
||||
def get_evaluation_results(
|
||||
self, data: Dict[str, Union[str, Dict]], dataset_name: str, model_name: str, metrics: List[str]
|
||||
):
|
||||
"""
|
||||
Evaluate inference data on the given metrics.
|
||||
|
||||
|
@ -292,10 +292,11 @@ class DatasetEvaluator(object):
|
|||
metrics: Metrics used to evaluate.
|
||||
|
||||
"""
|
||||
self.data = data
|
||||
self.data = data["inference_results"]
|
||||
self.dataset_name = dataset_name
|
||||
self.dataset_class = data["dataset_class"]
|
||||
self.model_name = model_name
|
||||
self.categories = list(data.keys())
|
||||
self.categories = list(self.data.keys())
|
||||
self.metrics = metrics
|
||||
self.judgements = {}
|
||||
|
||||
|
@ -315,9 +316,7 @@ class DatasetEvaluator(object):
|
|||
|
||||
for metric in self.metrics:
|
||||
# Train and reference split use same metric as test split.
|
||||
self.suggested_categories[metric] = metric_helper.metrics4subcategory[self.dataset_name.split("_")[0]][
|
||||
metric
|
||||
]
|
||||
self.suggested_categories[metric] = metric_helper.metrics4subcategory[self.dataset_class][metric]
|
||||
if "ALL" in self.suggested_categories[metric]:
|
||||
self.suggested_categories[metric] = self.categories
|
||||
self.metric_total_length[metric] = self.total_length
|
||||
|
|
|
@ -25,7 +25,7 @@ metrics4subcategory = {
|
|||
"per_byte_ppl_score": ["ALL"],
|
||||
},
|
||||
# The commented are non 4-choice questions.
|
||||
"agieval": {
|
||||
"AGIEvalDataset": {
|
||||
"combined_single_choice_accuracy": [
|
||||
# "lsat-ar",
|
||||
# "lsat-lr",
|
||||
|
@ -103,14 +103,14 @@ metrics4subcategory = {
|
|||
],
|
||||
"ppl_score": ["ALL"],
|
||||
},
|
||||
"cmmlu": {
|
||||
"CMMLUDataset": {
|
||||
"first_token_accuracy": ["ALL"],
|
||||
"single_choice_accuracy": ["ALL"],
|
||||
"perplexity": ["ALL"],
|
||||
"ppl_score_over_choices": ["ALL"],
|
||||
"ppl_score": ["ALL"],
|
||||
},
|
||||
"gaokaobench": {
|
||||
"GaoKaoBenchDataset": {
|
||||
"combined_single_choice_accuracy": [
|
||||
"English MCQs",
|
||||
"Biology MCQs",
|
||||
|
@ -170,7 +170,7 @@ metrics4subcategory = {
|
|||
"ppl_score_over_choices": ["ALL"],
|
||||
"ppl_score": ["ALL"],
|
||||
},
|
||||
"longbench": {
|
||||
"LongBenchDataset": {
|
||||
"f1_score": ["hotpotqa", "2wikimqa", "musique", "narrativeqa", "qasper", "multifieldqa_en", "triviaqa"],
|
||||
"f1_zh_score": ["multifieldqa_zh"],
|
||||
"rouge_score": ["gov_report", "qmsum", "multi_news", "samsum"],
|
||||
|
@ -183,7 +183,7 @@ metrics4subcategory = {
|
|||
"perplexity": ["ALL"],
|
||||
"ppl_score": ["ALL"],
|
||||
},
|
||||
"mmlu": {
|
||||
"MMLUDataset": {
|
||||
"first_token_accuracy": ["ALL"],
|
||||
"single_choice_accuracy": ["ALL"],
|
||||
"accuracy": ["ALL"],
|
||||
|
@ -191,11 +191,11 @@ metrics4subcategory = {
|
|||
"ppl_score_over_choices": ["ALL"],
|
||||
"ppl_score": ["ALL"],
|
||||
},
|
||||
"mtbench": {"mtbench_single_judge": ["ALL"]},
|
||||
"cvalues": {"first_token_accuracy": ["ALL"]},
|
||||
"safetybench_zh": {"first_token_accuracy": ["ALL"]},
|
||||
"safetybench_en": {"first_token_accuracy": ["ALL"]},
|
||||
"gsm": {
|
||||
"MTBenchDataset": {"mtbench_single_judge": ["ALL"]},
|
||||
"CValuesDataset": {"first_token_accuracy": ["ALL"]},
|
||||
"SafetyBenchZHDataset": {"first_token_accuracy": ["ALL"]},
|
||||
"SafetyBenchENDataset": {"first_token_accuracy": ["ALL"]},
|
||||
"GSMDataset": {
|
||||
"loss_over_all_tokens": ["ALL"],
|
||||
"gsm_accuracy": ["ALL"],
|
||||
},
|
||||
|
|
|
@ -116,10 +116,10 @@ class HuggingFaceModel(BaseModel):
|
|||
shard_config: Shard config for tensor parallel.
|
||||
|
||||
"""
|
||||
model_kwargs.setdefault("torch_dtype", torch.float16)
|
||||
|
||||
if "torch_dtype" in model_kwargs:
|
||||
model_kwargs["torch_dtype"] = eval(model_kwargs["torch_dtype"])
|
||||
else:
|
||||
model_kwargs.setdefault("torch_dtype", torch.float16)
|
||||
|
||||
if "config" in model_kwargs:
|
||||
model_kwargs["config"] = AutoConfig.from_pretrained(model_kwargs["config"])
|
||||
|
@ -586,11 +586,10 @@ class HuggingFaceCausalLM(HuggingFaceModel):
|
|||
shard_config: Shard config for tensor parallel.
|
||||
|
||||
"""
|
||||
|
||||
model_kwargs.setdefault("torch_dtype", torch.float16)
|
||||
|
||||
if "torch_dtype" in model_kwargs:
|
||||
model_kwargs["torch_dtype"] = eval(model_kwargs["torch_dtype"])
|
||||
else:
|
||||
model_kwargs.setdefault("torch_dtype", torch.float16)
|
||||
|
||||
if "config" in model_kwargs:
|
||||
model_kwargs["config"] = AutoConfig.from_pretrained(model_kwargs["config"])
|
||||
|
|
|
@ -15,7 +15,13 @@ from colossalai.shardformer import ShardConfig
|
|||
logger = get_dist_logger()
|
||||
|
||||
|
||||
def rm_and_merge(dp_size: int, save_path: str, model_names: List[str], dataset_names: Dict[str, List]) -> None:
|
||||
def rm_and_merge(
|
||||
dp_size: int,
|
||||
save_path: str,
|
||||
model_names: List[str],
|
||||
dataset_names: Dict[str, List],
|
||||
dataset_classes: Dict[str, List],
|
||||
) -> None:
|
||||
"""
|
||||
Remove inference result per rank and merge them into one file.
|
||||
|
||||
|
@ -24,11 +30,15 @@ def rm_and_merge(dp_size: int, save_path: str, model_names: List[str], dataset_n
|
|||
save_path: The folder for storing inference results.
|
||||
model_names: Names of models for inference.
|
||||
dataset_names: Names of dataset for inference.
|
||||
dataset_classes: Dataset class for different inference results. We need to save dataset class to smooth the evaluation process.
|
||||
|
||||
"""
|
||||
|
||||
for model_name in model_names:
|
||||
for dataset_name, categories in dataset_names.items():
|
||||
all_answers_with_dataset_class = {}
|
||||
all_answers_with_dataset_class["dataset_class"] = dataset_classes[dataset_name]
|
||||
|
||||
all_answers = {}
|
||||
for category in categories:
|
||||
all_answers[category] = {"data": []}
|
||||
|
@ -58,8 +68,13 @@ def rm_and_merge(dp_size: int, save_path: str, model_names: List[str], dataset_n
|
|||
|
||||
all_answers[category] = answers
|
||||
|
||||
all_answers_with_dataset_class["inference_results"] = all_answers
|
||||
|
||||
logger.info(f"Save inference results of model {model_name} on dataset {dataset_name}.")
|
||||
utils.jdump(all_answers, os.path.join(save_path, model_name, f"{dataset_name}_inference_results.json"))
|
||||
utils.jdump(
|
||||
all_answers_with_dataset_class,
|
||||
os.path.join(save_path, model_name, f"{dataset_name}_inference_results.json"),
|
||||
)
|
||||
|
||||
logger.info(f"Save inference results of model {model_name} for all dataset.")
|
||||
logger.info(f"Save inference results of all models for all dataset.")
|
||||
|
@ -98,6 +113,7 @@ def main(args):
|
|||
)
|
||||
|
||||
inference_data = {}
|
||||
dataset_classes = {}
|
||||
debug_args = {}
|
||||
few_shot_args = {}
|
||||
multiturn_args = {}
|
||||
|
@ -128,6 +144,7 @@ def main(args):
|
|||
|
||||
continue
|
||||
|
||||
dataset_classes[dataset_name] = dataset_parameter["dataset_class"]
|
||||
dataset_class = eval(f"dataset.{dataset_parameter['dataset_class']}")
|
||||
if not issubclass(dataset_class, dataset.BaseDataset):
|
||||
raise ValueError(f"Dataset class {dataset_parameter['dataset_class']} is not a subclass of BaseDataset.")
|
||||
|
@ -149,12 +166,14 @@ def main(args):
|
|||
debug_args[new_dataset_name] = dataset_parameter["debug"]
|
||||
few_shot_args[new_dataset_name] = dataset_parameter["few_shot"]
|
||||
inference_data[new_dataset_name] = dataset_.dataset["train"]
|
||||
dataset_classes[new_dataset_name] = dataset_parameter["dataset_class"]
|
||||
|
||||
if load_reference and "reference" in dataset_.dataset:
|
||||
new_dataset_name = f"{dataset_name}_reference"
|
||||
debug_args[new_dataset_name] = dataset_parameter["debug"]
|
||||
few_shot_args[new_dataset_name] = dataset_parameter["few_shot"]
|
||||
inference_data[new_dataset_name] = dataset_.dataset["reference"]
|
||||
dataset_classes[new_dataset_name] = dataset_parameter["dataset_class"]
|
||||
|
||||
if rank == 0:
|
||||
logger.info(f"Dataset for inference are: {list(inference_data.keys())}")
|
||||
|
@ -225,7 +244,7 @@ def main(args):
|
|||
if rank == 0:
|
||||
model_names = [model_parameter["name"] for model_parameter in model_parameters]
|
||||
dataset_names = {key: list(inference_data[key].keys()) for key in inference_data}
|
||||
rm_and_merge(dp_size, args.inference_save_path, model_names, dataset_names)
|
||||
rm_and_merge(dp_size, args.inference_save_path, model_names, dataset_names, dataset_classes)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
|
|
@ -15,7 +15,13 @@ from colossalai.shardformer import ShardConfig
|
|||
logger = get_dist_logger()
|
||||
|
||||
|
||||
def rm_and_merge(dp_size: int, save_path: str, model_names: List[str], dataset_names: Dict[str, List]) -> None:
|
||||
def rm_and_merge(
|
||||
dp_size: int,
|
||||
save_path: str,
|
||||
model_names: List[str],
|
||||
dataset_names: Dict[str, List],
|
||||
dataset_classes: Dict[str, List],
|
||||
) -> None:
|
||||
"""
|
||||
Remove inference result per rank and merge them into one file.
|
||||
|
||||
|
@ -24,11 +30,15 @@ def rm_and_merge(dp_size: int, save_path: str, model_names: List[str], dataset_n
|
|||
save_path: The folder for storing inference results.
|
||||
model_names: Names of models for inference.
|
||||
dataset_names: Names of dataset for inference.
|
||||
dataset_classes: Dataset class for different inference results. We need to save dataset class to smooth the evaluation process.
|
||||
|
||||
"""
|
||||
|
||||
for model_name in model_names:
|
||||
for dataset_name, categories in dataset_names.items():
|
||||
all_answers_with_dataset_class = {}
|
||||
all_answers_with_dataset_class["dataset_class"] = dataset_classes[dataset_name]
|
||||
|
||||
all_answers = {}
|
||||
for category in categories:
|
||||
all_answers[category] = {"data": []}
|
||||
|
@ -58,8 +68,13 @@ def rm_and_merge(dp_size: int, save_path: str, model_names: List[str], dataset_n
|
|||
|
||||
all_answers[category] = answers
|
||||
|
||||
all_answers_with_dataset_class["inference_results"] = all_answers
|
||||
|
||||
logger.info(f"Save inference results of model {model_name} on dataset {dataset_name}.")
|
||||
utils.jdump(all_answers, os.path.join(save_path, model_name, f"{dataset_name}_inference_results.json"))
|
||||
utils.jdump(
|
||||
all_answers_with_dataset_class,
|
||||
os.path.join(save_path, model_name, f"{dataset_name}_inference_results.json"),
|
||||
)
|
||||
|
||||
logger.info(f"Save inference results of model {model_name} for all dataset.")
|
||||
logger.info(f"Save inference results of all models for all dataset.")
|
||||
|
@ -98,6 +113,7 @@ def main(args):
|
|||
)
|
||||
|
||||
inference_data = {}
|
||||
dataset_classes = {}
|
||||
debug_args = {}
|
||||
few_shot_args = {}
|
||||
multiturn_args = {}
|
||||
|
@ -128,6 +144,7 @@ def main(args):
|
|||
|
||||
continue
|
||||
|
||||
dataset_classes[dataset_name] = dataset_parameter["dataset_class"]
|
||||
dataset_class = eval(f"dataset.{dataset_parameter['dataset_class']}")
|
||||
if not issubclass(dataset_class, dataset.BaseDataset):
|
||||
raise ValueError(f"Dataset class {dataset_parameter['dataset_class']} is not a subclass of BaseDataset.")
|
||||
|
@ -149,12 +166,14 @@ def main(args):
|
|||
debug_args[new_dataset_name] = dataset_parameter["debug"]
|
||||
few_shot_args[new_dataset_name] = dataset_parameter["few_shot"]
|
||||
inference_data[new_dataset_name] = dataset_.dataset["train"]
|
||||
dataset_classes[new_dataset_name] = dataset_parameter["dataset_class"]
|
||||
|
||||
if load_reference and "reference" in dataset_.dataset:
|
||||
new_dataset_name = f"{dataset_name}_reference"
|
||||
debug_args[new_dataset_name] = dataset_parameter["debug"]
|
||||
few_shot_args[new_dataset_name] = dataset_parameter["few_shot"]
|
||||
inference_data[new_dataset_name] = dataset_.dataset["reference"]
|
||||
dataset_classes[new_dataset_name] = dataset_parameter["dataset_class"]
|
||||
|
||||
if rank == 0:
|
||||
logger.info(f"Dataset for inference are: {list(inference_data.keys())}")
|
||||
|
@ -225,7 +244,7 @@ def main(args):
|
|||
if rank == 0:
|
||||
model_names = [model_parameter["name"] for model_parameter in model_parameters]
|
||||
dataset_names = {key: list(inference_data[key].keys()) for key in inference_data}
|
||||
rm_and_merge(dp_size, args.inference_save_path, model_names, dataset_names)
|
||||
rm_and_merge(dp_size, args.inference_save_path, model_names, dataset_names, dataset_classes)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
|
|
@ -437,6 +437,10 @@ class GeminiPlugin(DPPluginBase):
|
|||
enable_sequence_overlap=self.enable_sequence_overlap,
|
||||
)
|
||||
|
||||
def __del__(self):
|
||||
"""Destroy the prcess groups in ProcessGroupMesh"""
|
||||
self.pg_mesh.destroy_mesh_process_groups()
|
||||
|
||||
def support_no_sync(self) -> bool:
|
||||
return False
|
||||
|
||||
|
|
|
@ -1054,6 +1054,10 @@ class HybridParallelPlugin(PipelinePluginBase):
|
|||
|
||||
self.max_norm = max_norm
|
||||
|
||||
def __del__(self):
|
||||
"""Destroy the prcess groups in ProcessGroupMesh"""
|
||||
self.pg_mesh.destroy_mesh_process_groups()
|
||||
|
||||
@property
|
||||
def enable_pipeline_parallelism(self) -> bool:
|
||||
return self.pp_size > 1
|
||||
|
|
|
@ -45,7 +45,7 @@ class ProcessGroupMesh:
|
|||
self._ranks_to_group: Dict[Tuple[int, ...], ProcessGroup] = {}
|
||||
self._group_to_ranks: Dict[ProcessGroup, Tuple[int, ...]] = {}
|
||||
|
||||
def __del__(self):
|
||||
def destroy_mesh_process_groups(self):
|
||||
r"""
|
||||
Destructor method for the ProcessGroupMesh class.
|
||||
|
||||
|
|
|
@ -7,6 +7,12 @@ try:
|
|||
except:
|
||||
fused_mix_prec_layer_norm_cuda = None
|
||||
|
||||
try:
|
||||
import fused_weight_gradient_mlp_cuda
|
||||
_grad_accum_fusion_available = True
|
||||
except ImportError:
|
||||
_grad_accum_fusion_available = False
|
||||
|
||||
|
||||
class FusedLayerNormAffineFunction1D(torch.autograd.Function):
|
||||
r"""Layernorm
|
||||
|
@ -141,7 +147,19 @@ class LinearWithAsyncCommunication(torch.autograd.Function):
|
|||
# all-reduce scheduled first and have GPU resources allocated
|
||||
_ = torch.empty(1, device=grad_output.device) + 1
|
||||
|
||||
grad_weight = grad_output.t().matmul(total_input)
|
||||
if _grad_accum_fusion_available and weight.grad is not None:
|
||||
grad = weight.grad
|
||||
if grad.dtype == torch.float32:
|
||||
fused_weight_gradient_mlp_cuda.wgrad_gemm_accum_fp32(total_input, grad_output, grad)
|
||||
grad_weight = None
|
||||
elif grad.dtype == torch.float16:
|
||||
fused_weight_gradient_mlp_cuda.wgrad_gemm_accum_fp16(total_input, grad_output, grad)
|
||||
grad_weight = None
|
||||
else:
|
||||
grad_weight = grad_output.t().matmul(total_input)
|
||||
else:
|
||||
grad_weight = grad_output.t().matmul(total_input)
|
||||
|
||||
grad_bias = grad_output.sum(dim=0) if use_bias else None
|
||||
|
||||
if ctx.async_grad_allreduce:
|
||||
|
@ -214,7 +232,19 @@ class _LinearWithGatherForwardReduceScatterBackward(torch.autograd.Function):
|
|||
# reduce-scatter scheduled first and have GPU resources allocated
|
||||
_ = torch.empty(1, device=grad_output.device) + 1
|
||||
|
||||
grad_weight = grad_output.t().matmul(total_input)
|
||||
if _grad_accum_fusion_available and weight.grad is not None:
|
||||
grad = weight.grad
|
||||
if grad.dtype == torch.float32:
|
||||
fused_weight_gradient_mlp_cuda.wgrad_gemm_accum_fp32(total_input, grad_output, grad)
|
||||
grad_weight = None
|
||||
elif grad.dtype == torch.float16:
|
||||
fused_weight_gradient_mlp_cuda.wgrad_gemm_accum_fp16(total_input, grad_output, grad)
|
||||
grad_weight = None
|
||||
else:
|
||||
grad_weight = grad_output.t().matmul(total_input)
|
||||
else:
|
||||
grad_weight = grad_output.t().matmul(total_input)
|
||||
|
||||
grad_bias = grad_output.sum(dim=0) if use_bias else None
|
||||
|
||||
if ctx.async_grad_reduce_scatter:
|
||||
|
@ -249,7 +279,20 @@ class _LinearWithGatherForwardReduceScatterBackward(torch.autograd.Function):
|
|||
# calculate gradient
|
||||
if len(input_parallel.shape) > 2:
|
||||
input_parallel = input_parallel.view(-1, input_parallel.shape[-1])
|
||||
grad_weight = grad_output.t().matmul(input_parallel)
|
||||
|
||||
if _grad_accum_fusion_available and weight.grad is not None:
|
||||
grad = weight.grad
|
||||
if grad.dtype == torch.float32:
|
||||
fused_weight_gradient_mlp_cuda.wgrad_gemm_accum_fp32(input_parallel, grad_output, grad)
|
||||
grad_weight = None
|
||||
elif grad.dtype == torch.float16:
|
||||
fused_weight_gradient_mlp_cuda.wgrad_gemm_accum_fp16(input_parallel, grad_output, grad)
|
||||
grad_weight = None
|
||||
else:
|
||||
grad_weight = grad_output.t().matmul(input_parallel)
|
||||
else:
|
||||
grad_weight = grad_output.t().matmul(input_parallel)
|
||||
# grad_weight = grad_output.t().matmul(input_parallel)
|
||||
# wait until reduce-scatter finished
|
||||
reducescatter_handle.wait()
|
||||
|
||||
|
@ -388,7 +431,7 @@ class _MatmulWithGatherForwardReduceScatterBackward(torch.autograd.Function):
|
|||
input_parallel = torch.cat(tensor_list, dim=dim).contiguous()
|
||||
# calculate gradient
|
||||
if len(input_parallel.shape) > 2:
|
||||
input_parallel = input_parallel.view(-1, input_parallel.shape[-1])
|
||||
input_parallel = input_parallel.view(-1, input_parallel.shape[-1])
|
||||
grad_weight = input_parallel.t().matmul(grad_output)
|
||||
# wait until reduce-scatter finished
|
||||
reducescatter_handle.wait()
|
||||
|
|
|
@ -408,7 +408,7 @@ class Linear1D_Row(ParallelModule):
|
|||
handle.wait()
|
||||
output = torch.cat(output_parallel_list, dim=-1)
|
||||
else:
|
||||
output_parallel = F.linear(input_, self.weight)
|
||||
output_parallel = linear_with_async_comm(input_, self.weight, None, None, False)
|
||||
if self.seq_parallel:
|
||||
output = linear_reducescatter_forward_gather_backward(
|
||||
output_parallel, self.process_group, self.seq_parallel_dim
|
||||
|
|
|
@ -414,7 +414,7 @@ class LlamaPipelineForwards:
|
|||
return {"hidden_states": hidden_states}
|
||||
|
||||
|
||||
def get_llama_flash_attention_forward():
|
||||
def get_llama_flash_attention_forward(shard_config: ShardConfig):
|
||||
from transformers.models.llama.modeling_llama import LlamaAttention, apply_rotary_pos_emb
|
||||
|
||||
from colossalai.kernel.cuda_native import AttnMaskType, ColoAttention
|
||||
|
@ -470,14 +470,13 @@ def get_llama_flash_attention_forward():
|
|||
|
||||
flash_attention_mask = None
|
||||
attn_mask_type = AttnMaskType.causal
|
||||
if attention_mask != None:
|
||||
if not getattr(shard_config, "causal_lm", False) and attention_mask != None:
|
||||
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
||||
raise ValueError(
|
||||
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
||||
)
|
||||
flash_attention_mask = ~(attention_mask[:, :, -1].squeeze(1).to(torch.bool)).contiguous()
|
||||
if not torch.all(flash_attention_mask):
|
||||
attn_mask_type = AttnMaskType.paddedcausal
|
||||
attn_mask_type = AttnMaskType.paddedcausal
|
||||
|
||||
attention = ColoAttention(embed_dim=self.hidden_size, num_heads=self.num_heads)
|
||||
attn_output = attention(
|
||||
|
|
|
@ -130,7 +130,7 @@ class LlamaPolicy(Policy):
|
|||
if self.shard_config.enable_flash_attention:
|
||||
self.append_or_create_method_replacement(
|
||||
description={
|
||||
"forward": get_llama_flash_attention_forward(),
|
||||
"forward": get_llama_flash_attention_forward(self.shard_config),
|
||||
},
|
||||
policy=policy,
|
||||
target_key=LlamaAttention,
|
||||
|
@ -250,6 +250,8 @@ class LlamaForCausalLMPolicy(LlamaPolicy):
|
|||
|
||||
policy = super().module_policy()
|
||||
|
||||
setattr(self.shard_config, "causal_lm", True)
|
||||
|
||||
if self.shard_config.enable_tensor_parallelism:
|
||||
# add a new item for casual lm
|
||||
new_item = {
|
||||
|
|
|
@ -368,7 +368,7 @@ Colossal-AI 为您提供了一系列并行组件。我们的目标是让您的
|
|||
|
||||
环境要求:
|
||||
|
||||
- PyTorch >= 1.11 (PyTorch 2.x 正在适配中)
|
||||
- PyTorch >= 1.11 并且 PyTorch <= 2.1
|
||||
- Python >= 3.7
|
||||
- CUDA >= 11.0
|
||||
- [NVIDIA GPU Compute Capability](https://developer.nvidia.com/cuda-gpus) >= 7.0 (V100/RTX20 and higher)
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
# Setup
|
||||
|
||||
Requirements:
|
||||
- PyTorch >= 1.11 (PyTorch 2.x in progress)
|
||||
- PyTorch >= 1.11 and PyTorch <= 2.1
|
||||
- Python >= 3.7
|
||||
- CUDA >= 11.0
|
||||
- [NVIDIA GPU Compute Capability](https://developer.nvidia.com/cuda-gpus) >= 7.0 (V100/RTX20 and higher)
|
||||
|
|
|
@ -2,7 +2,7 @@
|
|||
|
||||
环境要求:
|
||||
|
||||
- PyTorch >= 1.11 (PyTorch 2.x 正在适配中)
|
||||
- PyTorch >= 1.11 并且 PyTorch <= 2.1
|
||||
- Python >= 3.7
|
||||
- CUDA >= 11.0
|
||||
- [NVIDIA GPU Compute Capability](https://developer.nvidia.com/cuda-gpus) >= 7.0 (V100/RTX20 and higher)
|
||||
|
|
|
@ -1,5 +1,4 @@
|
|||
diffusers
|
||||
fbgemm-gpu==0.2.0
|
||||
pytest
|
||||
coverage==7.2.3
|
||||
git+https://github.com/hpcaitech/pytest-testmon
|
||||
|
@ -16,7 +15,7 @@ triton==2.1.0
|
|||
requests==2.27.1 # downgrade to avoid huggingface error https://github.com/huggingface/transformers/issues/17611
|
||||
SentencePiece
|
||||
ninja
|
||||
flash_attn==2.0.5
|
||||
flash_attn
|
||||
datasets
|
||||
pydantic
|
||||
ray
|
||||
|
|
Loading…
Reference in New Issue