[fx] added activation checkpoint codegen support for torch < 1.12 (#1359)

pull/1364/head
Frank Lee 2022-07-25 23:35:31 +08:00 committed by GitHub
parent 4417804129
commit cd063ac37f
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 435 additions and 192 deletions

View File

@ -1,3 +1 @@
from .activation_checkpoint_codegen import ActivationCheckpointCodeGen
__all__ = ['ActivationCheckpointCodeGen']
from .activation_checkpoint_codegen import *

View File

@ -1,14 +1,22 @@
import torch
from typing import List, Callable, Any, Tuple, Dict
try:
from torch.fx.node import Node, Argument, map_arg, _type_repr, _get_qualified_name
from torch.fx.graph import _Namespace, PythonCode, _custom_builtins, _is_from_torch, _format_target, magic_methods, CodeGen, _origin_type_map
from torch.fx.graph import _Namespace, PythonCode, _custom_builtins, _is_from_torch, _format_target, magic_methods, CodeGen, _origin_type_map, inplace_methods
codegen_available = True
except:
from torch.fx.graph import _Namespace, PythonCode, _custom_builtins, _is_from_torch, _format_target, magic_methods, _origin_type_map, _format_args
from torch.fx.node import Node, Argument, map_arg, _type_repr, _get_qualified_name
codegen_available = False
if codegen_available:
__all__ = ['ActivationCheckpointCodeGen']
else:
__all__ = ['python_code_with_activation_checkpoint']
class ActivationCheckpointCodeGen(CodeGen):
def find_input_and_output_nodes(self, nodes: List[Node]):
def _find_input_and_output_nodes(nodes: List[Node]):
"""
Find the input and output node names which are not found in the given list of nodes.
"""
@ -33,7 +41,8 @@ class ActivationCheckpointCodeGen(CodeGen):
return input_nodes, output_nodes
def find_ckpt_regions(self, nodes: List[Node]):
def _find_ckpt_regions(nodes: List[Node]):
"""
Find the checkpoint regions given a list of consecutive nodes. The outputs will be list
of tuples, each tuple is in the form of (start_index, end_index).
@ -75,19 +84,22 @@ class ActivationCheckpointCodeGen(CodeGen):
pass
return ckpt_regions
def gen_ckpt_fn_def(self, label, free_vars: List[str]) -> str:
def _gen_ckpt_fn_def(label, free_vars: List[str]) -> str:
"""
Generate the checkpoint function definition
"""
return f"def checkpoint_{label}({', '.join(free_vars)}):"
def gen_ckpt_output(self, output_vars: List[str]) -> str:
def _gen_ckpt_output(output_vars: List[str]) -> str:
"""
Generate the return statement for checkpoint region
"""
return f"return {', '.join(output_vars)}"
def gen_ckpt_usage(self, label, input_vars, output_vars):
def _gen_ckpt_usage(label, input_vars, output_vars):
"""
Generate the checkpoint function call code text
"""
@ -95,6 +107,65 @@ class ActivationCheckpointCodeGen(CodeGen):
inputs = ', '.join(input_vars)
return f'{outputs} = torch.utils.checkpoint.checkpoint(checkpoint_{label}, {inputs})'
def emit_code_with_activation_checkpoint(body, nodes, emit_node_func, delete_unused_value_func):
# find the activation checkpoint regions
ckpt_regions = _find_ckpt_regions(nodes)
start_idx = [item[0] for item in ckpt_regions]
end_idx = [item[1] for item in ckpt_regions]
input_vars = []
output_vars = []
within_ckpt_region = False
node_list = list(nodes)
# find the input and output var names for each region
for idx, (start, end) in enumerate(ckpt_regions):
ckpt_node_list = node_list[start:end + 1]
inputs, outputs = _find_input_and_output_nodes(ckpt_node_list)
input_vars.append(inputs)
output_vars.append(outputs)
# append code text to body
for idx, node in enumerate(node_list):
# if this is the first node of the ckpt region
# append the ckpt function defition
if idx in start_idx:
label = start_idx.index(idx)
ckpt_fn_def = _gen_ckpt_fn_def(label, input_vars[label])
body.append(f'{ckpt_fn_def}\n')
within_ckpt_region = True
# NOTE: emit_node does not emit a string with newline. It depends
# on delete_unused_values to append one
emit_node_func(node)
# add indentation to the emmited node
if within_ckpt_region:
body[-1] = ' ' + body[-1]
# delete unused values
delete_unused_value_func(node)
if idx in end_idx:
# if this is the last node of the ckpt region
# generate return statement
label = end_idx.index(idx)
return_statement = _gen_ckpt_output(output_vars[label])
return_statement = f' {return_statement}\n'
body.append(return_statement)
# generate checkpoint function call in a new line
usage = _gen_ckpt_usage(label, input_vars[label], output_vars[label])
usage += '\n'
body.append(usage)
within_ckpt_region = False
if codegen_available:
class ActivationCheckpointCodeGen(CodeGen):
def _gen_python_code(self, nodes, root_module: str, namespace: _Namespace) -> PythonCode:
free_vars: List[str] = []
body: List[str] = []
@ -223,7 +294,8 @@ class ActivationCheckpointCodeGen(CodeGen):
return
elif node.op == 'call_method':
assert isinstance(node.target, str)
body.append(f'{repr(node)}{maybe_type_annotation} = {_format_target(repr(node.args[0]), node.target)}'
body.append(
f'{repr(node)}{maybe_type_annotation} = {_format_target(repr(node.args[0]), node.target)}'
f'({_format_args(node.args[1:], node.kwargs)})')
return
elif node.op == 'call_function':
@ -275,64 +347,8 @@ class ActivationCheckpointCodeGen(CodeGen):
return
raise NotImplementedError(f'node: {node.op} {node.target}')
#########################################
# Modified for activation checkpointing #
#########################################
# find the activation checkpoint regions
ckpt_regions = self.find_ckpt_regions(nodes)
start_idx = [item[0] for item in ckpt_regions]
end_idx = [item[1] for item in ckpt_regions]
input_vars = []
output_vars = []
within_ckpt_region = False
node_list = list(nodes)
# find the input and output var names for each region
for idx, (start, end) in enumerate(ckpt_regions):
ckpt_node_list = node_list[start:end + 1]
inputs, outputs = self.find_input_and_output_nodes(ckpt_node_list)
input_vars.append(inputs)
output_vars.append(outputs)
# append code text to body
for idx, node in enumerate(node_list):
# if this is the first node of the ckpt region
# append the ckpt function defition
if idx in start_idx:
label = start_idx.index(idx)
ckpt_fn_def = self.gen_ckpt_fn_def(label, input_vars[label])
body.append(f'{ckpt_fn_def}\n')
within_ckpt_region = True
# NOTE: emit_node does not emit a string with newline. It depends
# on delete_unused_values to append one
emit_node(node)
# add indentation to the emmited node
if within_ckpt_region:
body[-1] = ' ' + body[-1]
# delete unused values
delete_unused_values(node)
if idx in end_idx:
# if this is the last node of the ckpt region
# generate return statement
label = end_idx.index(idx)
return_statement = self.gen_ckpt_output(output_vars[label])
return_statement = f' {return_statement}\n'
body.append(return_statement)
# generate checkpoint function call in a new line
usage = self.gen_ckpt_usage(label, input_vars[label], output_vars[label])
usage += '\n'
body.append(usage)
within_ckpt_region = False
#######################################################
# Code Change For Activation Checkpointing Stops Here #
#######################################################
# Modified for activation checkpointing
emit_code_with_activation_checkpoint(body, nodes, emit_node, delete_unused_values)
if len(body) == 0:
# If the Graph has no non-placeholder nodes, no lines for the body
@ -362,3 +378,197 @@ class ActivationCheckpointCodeGen(CodeGen):
{prologue}
{code}"""
return PythonCode(fn_code, globals_)
else:
def python_code_with_activation_checkpoint(self, root_module: str, namespace: _Namespace) -> PythonCode:
"""
This method is copied from the _python_code of torch.fx.graph.Graph. Modifications are made so that it can generate
code for activation checkpoint.
"""
free_vars: List[str] = []
body: List[str] = []
globals_: Dict[str, Any] = {}
wrapped_fns: Dict[str, None] = {}
# Wrap string in list to pass by reference
maybe_return_annotation: List[str] = ['']
def add_global(name_hint: str, obj: Any):
"""Add an obj to be tracked as a global.
We call this for names that reference objects external to the
Graph, like functions or types.
Returns: the global name that should be used to reference 'obj' in generated source.
"""
if _is_from_torch(obj) and obj != torch.device: # to support registering torch.device
# HACK: workaround for how torch custom ops are registered. We
# can't import them like normal modules so they must retain their
# fully qualified name.
return _get_qualified_name(obj)
# normalize the name hint to get a proper identifier
global_name = namespace.create_name(name_hint, obj)
if global_name in globals_:
assert globals_[global_name] is obj
return global_name
globals_[global_name] = obj
return global_name
# Pre-fill the globals table with registered builtins.
for name, (_, obj) in _custom_builtins.items():
add_global(name, obj)
def type_repr(o: Any):
if o == ():
# Empty tuple is used for empty tuple type annotation Tuple[()]
return '()'
typename = _type_repr(o)
# This is a generic type, e.g. typing.List[torch.Tensor]
if hasattr(o, '__origin__'):
origin_type = _origin_type_map.get(o.__origin__, o.__origin__)
origin_typename = add_global(_type_repr(origin_type), origin_type)
# Assign global names for each of the inner type variables.
args = [type_repr(arg) for arg in o.__args__]
return f'{origin_typename}[{",".join(args)}]'
# Common case: this is a regular module name like 'foo.bar.baz'
return add_global(typename, o)
# Run through reverse nodes and record the first instance of a use
# of a given node. This represents the *last* use of the node in the
# execution order of the program, which we will use to free unused
# values
node_to_last_use: Dict[Node, Node] = {}
user_to_last_uses: Dict[Node, List[Node]] = {}
def register_last_uses(n: Node, user: Node):
if n not in node_to_last_use:
node_to_last_use[n] = user
user_to_last_uses.setdefault(user, []).append(n)
for node in reversed(self.nodes):
map_arg(node.args, lambda n: register_last_uses(n, node))
map_arg(node.kwargs, lambda n: register_last_uses(n, node))
def delete_unused_values(user: Node):
"""
Delete values after their last use. This ensures that values that are
not used in the remainder of the code are freed and the memory usage
of the code is optimal.
"""
if user.op == 'placeholder':
return
if user.op == 'output':
body.append('\n')
return
nodes_to_delete = user_to_last_uses.get(user, [])
if len(nodes_to_delete):
to_delete_str = ' = '.join([repr(n) for n in nodes_to_delete] + ['None'])
body.append(f'; {to_delete_str}\n')
else:
body.append('\n')
def emit_node(node: Node):
maybe_type_annotation = '' if node.type is None else f' : {type_repr(node.type)}'
if node.op == 'placeholder':
assert isinstance(node.target, str)
maybe_default_arg = '' if not node.args else f' = {repr(node.args[0])}'
free_vars.append(f'{node.target}{maybe_type_annotation}{maybe_default_arg}')
raw_name = node.target.replace('*', '')
if raw_name != repr(node):
body.append(f'{repr(node)} = {raw_name}\n')
return
elif node.op == 'call_method':
assert isinstance(node.target, str)
body.append(f'{repr(node)}{maybe_type_annotation} = {_format_target(repr(node.args[0]), node.target)}'
f'({_format_args(node.args[1:], node.kwargs)})')
return
elif node.op == 'call_function':
assert callable(node.target)
# pretty print operators
if node.target.__module__ == '_operator' and node.target.__name__ in magic_methods:
assert isinstance(node.args, tuple)
body.append(f'{repr(node)}{maybe_type_annotation} = '
f'{magic_methods[node.target.__name__].format(*(repr(a) for a in node.args))}')
return
qualified_name = _get_qualified_name(node.target)
global_name = add_global(qualified_name, node.target)
# special case for getattr: node.args could be 2-argument or 3-argument
# 2-argument: attribute access; 3-argument: fall through to attrib function call with default value
if global_name == 'getattr' and \
isinstance(node.args, tuple) and \
isinstance(node.args[1], str) and \
node.args[1].isidentifier() and \
len(node.args) == 2:
body.append(
f'{repr(node)}{maybe_type_annotation} = {_format_target(repr(node.args[0]), node.args[1])}')
return
body.append(
f'{repr(node)}{maybe_type_annotation} = {global_name}({_format_args(node.args, node.kwargs)})')
if node.meta.get('is_wrapped', False):
wrapped_fns.setdefault(global_name)
return
elif node.op == 'call_module':
assert isinstance(node.target, str)
body.append(f'{repr(node)}{maybe_type_annotation} = '
f'{_format_target(root_module, node.target)}({_format_args(node.args, node.kwargs)})')
return
elif node.op == 'get_attr':
assert isinstance(node.target, str)
body.append(f'{repr(node)}{maybe_type_annotation} = {_format_target(root_module, node.target)}')
return
elif node.op == 'output':
if node.type is not None:
maybe_return_annotation[0] = f" -> {type_repr(node.type)}"
if self._pytree_info is None:
body.append(f'return {repr(node.args[0])}')
else:
body.append(f'return pytree.tree_unflatten({repr(node.args[0])}, self._out_spec)')
return
raise NotImplementedError(f'node: {node.op} {node.target}')
# Modified for activation checkpointing
emit_code_with_activation_checkpoint(body, self.nodes, emit_node, delete_unused_values)
if len(body) == 0:
# If the Graph has no non-placeholder nodes, no lines for the body
# have been emitted. To continue to have valid Python code, emit a
# single pass statement
body.append('pass\n')
if self._pytree_info is not None:
orig_args = self._pytree_info.orig_args
has_orig_self = (orig_args[0] == 'self')
if has_orig_self:
free_vars.insert(0, 'self')
if len(free_vars) > 0: # pytree has placeholders in it
body.insert(
0,
f"{', '.join(free_vars)}, = fx_pytree.tree_flatten_spec([{', '.join(orig_args)}], self._in_spec)\n")
else:
orig_args = free_vars
if len(wrapped_fns) > 0:
wrap_name = add_global('wrap', torch.fx.wrap)
wrap_stmts = '\n'.join([f'{wrap_name}("{name}")' for name in wrapped_fns])
else:
wrap_stmts = ''
# If the original function didn't have self as its first argument, we
# would have added it.
if len(orig_args) == 0 or orig_args[0] != 'self':
orig_args.insert(0, 'self')
code = ''.join(body)
code = '\n'.join(' ' + line for line in code.split('\n'))
fn_code = f"""
{wrap_stmts}
def forward({', '.join(orig_args)}){maybe_return_annotation[0]}:
{code}"""
return PythonCode(fn_code, globals_)

View File

@ -6,8 +6,11 @@ from colossalai.fx import ColoTracer
try:
from colossalai.fx.codegen import ActivationCheckpointCodeGen
with_codegen = True
except:
pass
# fall back to older pytorch version
from colossalai.fx.codegen import python_code_with_activation_checkpoint
with_codegen = False
class MLP(torch.nn.Module):
@ -35,7 +38,7 @@ class MyModule(torch.nn.Module):
return y1 + y2 + y3 + y4
@pytest.mark.skip("torch 1.12 is required")
@pytest.mark.skipif(not with_codegen, reason='torch version is lower than 1.12.0')
def test_act_ckpt_codegen():
# build model and run forward
model = MyModule()
@ -65,5 +68,37 @@ def test_act_ckpt_codegen():
assert torch.equal(non_fx_out, fx_out)
@pytest.mark.skipif(with_codegen, reason='torch version is equal to or higher than 1.12.0')
def test_act_ckpt_python_code_torch11():
# build model and run forward
model = MyModule()
data = torch.rand(4, 4)
non_fx_out = model(data)
# trace the module and replace codegen
tracer = ColoTracer(trace_act_ckpt=True)
graph = tracer.trace(model)
# replace a bound method of an object
graph._python_code = python_code_with_activation_checkpoint.__get__(graph)
# check ops are annotated with ckpt
ckpt_nodes = ['mlp1_linear1', 'mlp1_linear1_1', 'mlp2_linear1', 'mlp2_linear1_1']
for node in graph.nodes:
if node.name in ckpt_nodes:
assert hasattr(node, 'activation_checkpoint')
# assert checkpoint function will be generated
code = graph.python_code('self').src
assert 'checkpoint_0' in code and 'checkpoint_1' in code
# recompile and verify the outputs are consistent
gm = GraphModule(model, graph)
gm.recompile()
fx_out = gm(data)
assert torch.equal(non_fx_out, fx_out)
if __name__ == '__main__':
test_act_ckpt_codegen()
test_act_ckpt_python_code_torch11()