Browse Source

[test] polish zero related unitest (#351)

pull/394/head
Jiarui Fang 3 years ago committed by Frank Lee
parent
commit
cb34cd384d
  1. 19
      colossalai/zero/sharded_model/utils.py
  2. 17
      tests/test_zero_data_parallel/common.py
  3. 87
      tests/test_zero_data_parallel/test_shard_model_v2.py
  4. 73
      tests/test_zero_data_parallel/test_sharded_model_with_ctx.py
  5. 2
      tests/test_zero_data_parallel/test_sharded_optim_v2_with_cpu_adam.py

19
colossalai/zero/sharded_model/utils.py

@ -0,0 +1,19 @@
import torch
from colossalai.zero.sharded_model import ShardedModelV2
import copy
def col_model_deepcopy(sharded_model: ShardedModelV2, other_model: torch.nn.Module):
"""
copy param of the ShardedModelV2 to other_model.
Note the other_model has to be the same as self.
"""
for zero_param, param in zip(sharded_model.parameters(), other_model.parameters()):
assert hasattr(zero_param, 'col_attr')
shard_flag = zero_param.col_attr.data.is_sharded
if shard_flag:
sharded_model.shard_strategy.gather([zero_param.col_attr.data])
param.data = copy.deepcopy(zero_param.col_attr.data.payload)
if shard_flag:
sharded_model.shard_strategy.shard([zero_param.col_attr.data])

17
tests/test_zero_data_parallel/common.py

@ -3,8 +3,10 @@ from functools import partial
import torch
import torch.distributed as dist
import torch.nn as nn
from colossalai.logging import get_dist_logger
from colossalai.utils import checkpoint
from colossalai.zero.sharded_model import ShardedModelV2
LOGGER = get_dist_logger()
@ -20,6 +22,21 @@ CONFIG = dict(fp16=dict(mode=None,),
parallel=dict(pipeline=dict(size=1), tensor=dict(size=1, mode=None)))
def run_fwd_bwd(model, data, label, criterion, enable_autocast=False):
model.train()
with torch.cuda.amp.autocast(enabled=enable_autocast):
if criterion:
y = model(data)
loss = criterion(y, label)
else:
loss = model(data, label)
loss = loss.float()
if isinstance(model, ShardedModelV2):
model.backward(loss)
else:
loss.backward()
def checkpoint_wrapper(module, enable=True):
if enable:
module.forward = partial(checkpoint, module.forward)

87
tests/test_zero_data_parallel/test_shard_model_v2.py

@ -3,81 +3,70 @@
import copy
from functools import partial
import colossalai
import pytest
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
from torch.nn.parallel import DistributedDataParallel as DDP
import colossalai
from colossalai.zero.init_ctx import ZeroInitContext
from colossalai.utils import free_port
from colossalai.zero.shard_utils.tensor_shard_strategy import \
TensorShardStrategy
from colossalai.zero.sharded_model import ShardedModelV2
from colossalai.zero.sharded_model._zero3_utils import cast_tensor_to_fp16
from tests.components_to_test.registry import non_distributed_component_funcs
from torch.nn.parallel import DistributedDataParallel as DDP
from common import CONFIG, check_grads_padding
def run_fwd_bwd(model, data, label, criterion, enable_autocast=False):
model.train()
with torch.cuda.amp.autocast(enabled=enable_autocast):
y = model(data)
loss = criterion(y, label)
loss = loss.float()
if isinstance(model, ShardedModelV2):
model.backward(loss)
else:
loss.backward()
# with no criterion
def run_fwd_bwd_no_criterion(model, data, label, enable_autocast=False):
model.train()
with torch.cuda.amp.autocast(enabled=enable_autocast):
loss = model(data, label)
if isinstance(model, ShardedModelV2):
model.backward(loss)
else:
loss.backward()
from tests.components_to_test.registry import non_distributed_component_funcs
from common import CONFIG, check_grads_padding, run_fwd_bwd
from colossalai.zero.sharded_model.utils import col_model_deepcopy
def run_dist(rank, world_size, port):
def run_dist(rank, world_size, port, use_zero_init_ctx, enable_autocast):
colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
test_models = ['repeated_computed_layers', 'resnet18', 'bert']
shard_strategy = TensorShardStrategy()
for model_name in test_models:
get_components_func = non_distributed_component_funcs.get_callable(model_name)
model, train_dataloader, test_dataloader, optimizer, criterion = get_components_func()
model = model(checkpoint=True).half().cuda()
zero_model = ShardedModelV2(copy.deepcopy(model), shard_strategy)
if dist.get_world_size() > 1:
model = DDP(model)
model_builder, train_dataloader, _, _, criterion = get_components_func()
if use_zero_init_ctx:
with ZeroInitContext(convert_fp16=True, convert_cuda=True, shard_strategy=shard_strategy, shard_param=True):
zero_model = model_builder(checkpoint=True)
zero_model = ShardedModelV2(zero_model, shard_strategy)
model = model_builder(checkpoint=True).half()
col_model_deepcopy(zero_model, model)
model = model.cuda()
else:
model = model_builder(checkpoint=True).half().cuda()
zero_model = ShardedModelV2(copy.deepcopy(model), shard_strategy)
model = DDP(model)
for i, (data, label) in enumerate(train_dataloader):
if i > 2:
if i > 3:
break
if criterion is None:
data, label = data.cuda(), label.cuda()
run_fwd_bwd_no_criterion(model, data, label, False)
run_fwd_bwd_no_criterion(zero_model, data, label, False)
else:
data, label = cast_tensor_to_fp16(data).cuda(), label.cuda()
run_fwd_bwd(model, data, label, criterion, False)
run_fwd_bwd(zero_model, data, label, criterion, False)
data, label = cast_tensor_to_fp16(data).cuda(), label.cuda()
run_fwd_bwd(model, data, label, criterion, enable_autocast)
run_fwd_bwd(zero_model, data, label, criterion, enable_autocast)
check_grads_padding(model, zero_model, loose=True)
@pytest.mark.dist
@pytest.mark.parametrize("world_size", [1, 2, 4])
def test_shard_model_v2(world_size):
run_func = partial(run_dist, world_size=world_size, port=free_port())
@pytest.mark.parametrize("world_size", [1, 2])
@pytest.mark.parametrize("enable_autocast", [True])
@pytest.mark.parametrize("use_zero_init_ctx", [True])
def test_shard_model_v2(world_size, use_zero_init_ctx, enable_autocast):
run_func = partial(run_dist,
world_size=world_size,
port=free_port(),
use_zero_init_ctx=use_zero_init_ctx,
enable_autocast=enable_autocast)
mp.spawn(run_func, nprocs=world_size)
if __name__ == '__main__':
test_shard_model_v2(world_size=2)
test_shard_model_v2(world_size=2, use_zero_init_ctx=True, enable_autocast=True)

73
tests/test_zero_data_parallel/test_sharded_model_with_ctx.py

@ -1,73 +0,0 @@
#!/usr/bin/env python
# -*- encoding: utf-8 -*-
import copy
from functools import partial
import colossalai
import pytest
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
from colossalai.utils import free_port
from colossalai.zero.init_ctx import ZeroInitContext
from colossalai.zero.shard_utils.tensor_shard_strategy import \
TensorShardStrategy
from colossalai.zero.sharded_model import ShardedModelV2
from tests.components_to_test.registry import non_distributed_component_funcs
from torch.nn.parallel import DistributedDataParallel as DDP
from common import CONFIG, check_grads, check_grads_padding
def run_fwd_bwd(model, data, label, criterion, enable_autocast=False):
model.train()
with torch.cuda.amp.autocast(enabled=enable_autocast):
y = model(data)
loss = criterion(y, label)
loss = loss.float()
if isinstance(model, ShardedModelV2):
model.backward(loss)
else:
loss.backward()
def run_dist(rank, world_size, port):
colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
test_models = ['repeated_computed_layers', 'resnet18']
for model_name in test_models:
get_components_func = non_distributed_component_funcs.get_callable(model_name)
shard_strategy = TensorShardStrategy()
with ZeroInitContext(convert_fp16=True, convert_cuda=True, shard_strategy=shard_strategy, shard_param=True):
zero_model, train_dataloader, test_dataloader, optimizer, criterion = get_components_func()
zero_model = zero_model()
model = copy.deepcopy(zero_model)
zero_model = ShardedModelV2(zero_model, shard_strategy)
model_state_dict = zero_model.state_dict()
for n, p in model.named_parameters():
p.data = model_state_dict[n]
model = model.half().cuda()
if dist.get_world_size() > 1:
model = DDP(model)
for i, (data, label) in enumerate(train_dataloader):
if i > 2:
break
data, label = data.half().cuda(), label.cuda()
run_fwd_bwd(model, data, label, criterion, False)
run_fwd_bwd(zero_model, data, label, criterion, False)
if dist.get_world_size() > 1:
check_grads_padding(model, zero_model, loose=True)
else:
check_grads(model, zero_model, loose=True)
@pytest.mark.dist
def test_shard_model_v2():
world_size = 2
run_func = partial(run_dist, world_size=world_size, port=free_port())
mp.spawn(run_func, nprocs=world_size)
if __name__ == '__main__':
test_shard_model_v2()

2
tests/test_zero_data_parallel/test_sharded_optim_v2_with_cpu_adam.py

@ -78,7 +78,7 @@ def run_dist(rank, world_size, port):
@pytest.mark.dist
@pytest.mark.parametrize("world_size", [1, 2, 4])
@pytest.mark.parametrize("world_size", [1, 2])
def test_sharded_optim_v2(world_size):
run_func = partial(run_dist, world_size=world_size, port=free_port())
mp.spawn(run_func, nprocs=world_size)

Loading…
Cancel
Save