mirror of https://github.com/hpcaitech/ColossalAI
[test] polish zero related unitest (#351)
parent
534e0bb118
commit
cb34cd384d
|
@ -0,0 +1,19 @@
|
|||
import torch
|
||||
from colossalai.zero.sharded_model import ShardedModelV2
|
||||
|
||||
import copy
|
||||
|
||||
|
||||
def col_model_deepcopy(sharded_model: ShardedModelV2, other_model: torch.nn.Module):
|
||||
"""
|
||||
copy param of the ShardedModelV2 to other_model.
|
||||
Note the other_model has to be the same as self.
|
||||
"""
|
||||
for zero_param, param in zip(sharded_model.parameters(), other_model.parameters()):
|
||||
assert hasattr(zero_param, 'col_attr')
|
||||
shard_flag = zero_param.col_attr.data.is_sharded
|
||||
if shard_flag:
|
||||
sharded_model.shard_strategy.gather([zero_param.col_attr.data])
|
||||
param.data = copy.deepcopy(zero_param.col_attr.data.payload)
|
||||
if shard_flag:
|
||||
sharded_model.shard_strategy.shard([zero_param.col_attr.data])
|
|
@ -3,8 +3,10 @@ from functools import partial
|
|||
import torch
|
||||
import torch.distributed as dist
|
||||
import torch.nn as nn
|
||||
|
||||
from colossalai.logging import get_dist_logger
|
||||
from colossalai.utils import checkpoint
|
||||
from colossalai.zero.sharded_model import ShardedModelV2
|
||||
|
||||
LOGGER = get_dist_logger()
|
||||
|
||||
|
@ -20,6 +22,21 @@ CONFIG = dict(fp16=dict(mode=None,),
|
|||
parallel=dict(pipeline=dict(size=1), tensor=dict(size=1, mode=None)))
|
||||
|
||||
|
||||
def run_fwd_bwd(model, data, label, criterion, enable_autocast=False):
|
||||
model.train()
|
||||
with torch.cuda.amp.autocast(enabled=enable_autocast):
|
||||
if criterion:
|
||||
y = model(data)
|
||||
loss = criterion(y, label)
|
||||
else:
|
||||
loss = model(data, label)
|
||||
loss = loss.float()
|
||||
if isinstance(model, ShardedModelV2):
|
||||
model.backward(loss)
|
||||
else:
|
||||
loss.backward()
|
||||
|
||||
|
||||
def checkpoint_wrapper(module, enable=True):
|
||||
if enable:
|
||||
module.forward = partial(checkpoint, module.forward)
|
||||
|
|
|
@ -3,81 +3,70 @@
|
|||
|
||||
import copy
|
||||
from functools import partial
|
||||
import pytest
|
||||
|
||||
import torch.multiprocessing as mp
|
||||
from torch.nn.parallel import DistributedDataParallel as DDP
|
||||
|
||||
import colossalai
|
||||
import pytest
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
import torch.multiprocessing as mp
|
||||
from colossalai.zero.init_ctx import ZeroInitContext
|
||||
from colossalai.utils import free_port
|
||||
from colossalai.zero.shard_utils.tensor_shard_strategy import \
|
||||
TensorShardStrategy
|
||||
from colossalai.zero.sharded_model import ShardedModelV2
|
||||
from colossalai.zero.sharded_model._zero3_utils import cast_tensor_to_fp16
|
||||
|
||||
from tests.components_to_test.registry import non_distributed_component_funcs
|
||||
from torch.nn.parallel import DistributedDataParallel as DDP
|
||||
|
||||
from common import CONFIG, check_grads_padding
|
||||
from common import CONFIG, check_grads_padding, run_fwd_bwd
|
||||
from colossalai.zero.sharded_model.utils import col_model_deepcopy
|
||||
|
||||
|
||||
def run_fwd_bwd(model, data, label, criterion, enable_autocast=False):
|
||||
model.train()
|
||||
with torch.cuda.amp.autocast(enabled=enable_autocast):
|
||||
y = model(data)
|
||||
loss = criterion(y, label)
|
||||
loss = loss.float()
|
||||
if isinstance(model, ShardedModelV2):
|
||||
model.backward(loss)
|
||||
else:
|
||||
loss.backward()
|
||||
|
||||
|
||||
# with no criterion
|
||||
def run_fwd_bwd_no_criterion(model, data, label, enable_autocast=False):
|
||||
model.train()
|
||||
with torch.cuda.amp.autocast(enabled=enable_autocast):
|
||||
loss = model(data, label)
|
||||
if isinstance(model, ShardedModelV2):
|
||||
model.backward(loss)
|
||||
else:
|
||||
loss.backward()
|
||||
|
||||
|
||||
def run_dist(rank, world_size, port):
|
||||
def run_dist(rank, world_size, port, use_zero_init_ctx, enable_autocast):
|
||||
colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||
|
||||
test_models = ['repeated_computed_layers', 'resnet18', 'bert']
|
||||
shard_strategy = TensorShardStrategy()
|
||||
for model_name in test_models:
|
||||
get_components_func = non_distributed_component_funcs.get_callable(model_name)
|
||||
model, train_dataloader, test_dataloader, optimizer, criterion = get_components_func()
|
||||
model = model(checkpoint=True).half().cuda()
|
||||
zero_model = ShardedModelV2(copy.deepcopy(model), shard_strategy)
|
||||
if dist.get_world_size() > 1:
|
||||
model = DDP(model)
|
||||
model_builder, train_dataloader, _, _, criterion = get_components_func()
|
||||
|
||||
if use_zero_init_ctx:
|
||||
with ZeroInitContext(convert_fp16=True, convert_cuda=True, shard_strategy=shard_strategy, shard_param=True):
|
||||
zero_model = model_builder(checkpoint=True)
|
||||
zero_model = ShardedModelV2(zero_model, shard_strategy)
|
||||
|
||||
model = model_builder(checkpoint=True).half()
|
||||
col_model_deepcopy(zero_model, model)
|
||||
model = model.cuda()
|
||||
else:
|
||||
model = model_builder(checkpoint=True).half().cuda()
|
||||
zero_model = ShardedModelV2(copy.deepcopy(model), shard_strategy)
|
||||
|
||||
model = DDP(model)
|
||||
|
||||
for i, (data, label) in enumerate(train_dataloader):
|
||||
if i > 2:
|
||||
if i > 3:
|
||||
break
|
||||
|
||||
if criterion is None:
|
||||
data, label = data.cuda(), label.cuda()
|
||||
run_fwd_bwd_no_criterion(model, data, label, False)
|
||||
run_fwd_bwd_no_criterion(zero_model, data, label, False)
|
||||
else:
|
||||
data, label = cast_tensor_to_fp16(data).cuda(), label.cuda()
|
||||
run_fwd_bwd(model, data, label, criterion, False)
|
||||
run_fwd_bwd(zero_model, data, label, criterion, False)
|
||||
data, label = cast_tensor_to_fp16(data).cuda(), label.cuda()
|
||||
run_fwd_bwd(model, data, label, criterion, enable_autocast)
|
||||
run_fwd_bwd(zero_model, data, label, criterion, enable_autocast)
|
||||
|
||||
check_grads_padding(model, zero_model, loose=True)
|
||||
|
||||
|
||||
@pytest.mark.dist
|
||||
@pytest.mark.parametrize("world_size", [1, 2, 4])
|
||||
def test_shard_model_v2(world_size):
|
||||
run_func = partial(run_dist, world_size=world_size, port=free_port())
|
||||
@pytest.mark.parametrize("world_size", [1, 2])
|
||||
@pytest.mark.parametrize("enable_autocast", [True])
|
||||
@pytest.mark.parametrize("use_zero_init_ctx", [True])
|
||||
def test_shard_model_v2(world_size, use_zero_init_ctx, enable_autocast):
|
||||
run_func = partial(run_dist,
|
||||
world_size=world_size,
|
||||
port=free_port(),
|
||||
use_zero_init_ctx=use_zero_init_ctx,
|
||||
enable_autocast=enable_autocast)
|
||||
mp.spawn(run_func, nprocs=world_size)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_shard_model_v2(world_size=2)
|
||||
test_shard_model_v2(world_size=2, use_zero_init_ctx=True, enable_autocast=True)
|
||||
|
|
|
@ -1,73 +0,0 @@
|
|||
#!/usr/bin/env python
|
||||
# -*- encoding: utf-8 -*-
|
||||
|
||||
import copy
|
||||
from functools import partial
|
||||
|
||||
import colossalai
|
||||
import pytest
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
import torch.multiprocessing as mp
|
||||
from colossalai.utils import free_port
|
||||
from colossalai.zero.init_ctx import ZeroInitContext
|
||||
from colossalai.zero.shard_utils.tensor_shard_strategy import \
|
||||
TensorShardStrategy
|
||||
from colossalai.zero.sharded_model import ShardedModelV2
|
||||
from tests.components_to_test.registry import non_distributed_component_funcs
|
||||
from torch.nn.parallel import DistributedDataParallel as DDP
|
||||
|
||||
from common import CONFIG, check_grads, check_grads_padding
|
||||
|
||||
|
||||
def run_fwd_bwd(model, data, label, criterion, enable_autocast=False):
|
||||
model.train()
|
||||
with torch.cuda.amp.autocast(enabled=enable_autocast):
|
||||
y = model(data)
|
||||
loss = criterion(y, label)
|
||||
loss = loss.float()
|
||||
if isinstance(model, ShardedModelV2):
|
||||
model.backward(loss)
|
||||
else:
|
||||
loss.backward()
|
||||
|
||||
|
||||
def run_dist(rank, world_size, port):
|
||||
colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||
test_models = ['repeated_computed_layers', 'resnet18']
|
||||
for model_name in test_models:
|
||||
get_components_func = non_distributed_component_funcs.get_callable(model_name)
|
||||
shard_strategy = TensorShardStrategy()
|
||||
with ZeroInitContext(convert_fp16=True, convert_cuda=True, shard_strategy=shard_strategy, shard_param=True):
|
||||
zero_model, train_dataloader, test_dataloader, optimizer, criterion = get_components_func()
|
||||
zero_model = zero_model()
|
||||
model = copy.deepcopy(zero_model)
|
||||
zero_model = ShardedModelV2(zero_model, shard_strategy)
|
||||
model_state_dict = zero_model.state_dict()
|
||||
for n, p in model.named_parameters():
|
||||
p.data = model_state_dict[n]
|
||||
model = model.half().cuda()
|
||||
if dist.get_world_size() > 1:
|
||||
model = DDP(model)
|
||||
|
||||
for i, (data, label) in enumerate(train_dataloader):
|
||||
if i > 2:
|
||||
break
|
||||
data, label = data.half().cuda(), label.cuda()
|
||||
run_fwd_bwd(model, data, label, criterion, False)
|
||||
run_fwd_bwd(zero_model, data, label, criterion, False)
|
||||
if dist.get_world_size() > 1:
|
||||
check_grads_padding(model, zero_model, loose=True)
|
||||
else:
|
||||
check_grads(model, zero_model, loose=True)
|
||||
|
||||
|
||||
@pytest.mark.dist
|
||||
def test_shard_model_v2():
|
||||
world_size = 2
|
||||
run_func = partial(run_dist, world_size=world_size, port=free_port())
|
||||
mp.spawn(run_func, nprocs=world_size)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_shard_model_v2()
|
|
@ -78,7 +78,7 @@ def run_dist(rank, world_size, port):
|
|||
|
||||
|
||||
@pytest.mark.dist
|
||||
@pytest.mark.parametrize("world_size", [1, 2, 4])
|
||||
@pytest.mark.parametrize("world_size", [1, 2])
|
||||
def test_sharded_optim_v2(world_size):
|
||||
run_func = partial(run_dist, world_size=world_size, port=free_port())
|
||||
mp.spawn(run_func, nprocs=world_size)
|
||||
|
|
Loading…
Reference in New Issue