mirror of https://github.com/hpcaitech/ColossalAI
[tensor] refine linear and add gather for laynorm (#893)
* refine linear and add function to ColoTensor * add gather for layernorm * polish * polishpull/897/head
parent
26c49639d8
commit
cb182da7c5
|
@ -1,4 +1,4 @@
|
||||||
from .spec import ComputePattern, ParallelAction, TensorSpec
|
from .spec import ComputePattern, ParallelAction, TensorSpec, ShardPattern
|
||||||
from .op_wrapper import (
|
from .op_wrapper import (
|
||||||
colo_op_impl,)
|
colo_op_impl,)
|
||||||
from .colo_tensor import ColoTensor
|
from .colo_tensor import ColoTensor
|
||||||
|
@ -7,5 +7,5 @@ from ._ops import *
|
||||||
|
|
||||||
__all__ = [
|
__all__ = [
|
||||||
'ColoTensor', 'convert_parameter', 'colo_op_impl', 'ComputePattern', 'TensorSpec', 'ParallelAction',
|
'ColoTensor', 'convert_parameter', 'colo_op_impl', 'ComputePattern', 'TensorSpec', 'ParallelAction',
|
||||||
'named_params_with_colotensor'
|
'named_params_with_colotensor', 'ShardPattern'
|
||||||
]
|
]
|
||||||
|
|
|
@ -27,6 +27,8 @@ def colo_layernorm(types, args=(), kwargs=None, pg=None):
|
||||||
eps = kwargs['eps']
|
eps = kwargs['eps']
|
||||||
|
|
||||||
if isinstance(input_tensor, ColoTensor):
|
if isinstance(input_tensor, ColoTensor):
|
||||||
|
if input_tensor.is_activation() and not input_tensor.is_gathered():
|
||||||
|
input_tensor.gather()
|
||||||
input_tensor = input_tensor.torch_tensor()
|
input_tensor = input_tensor.torch_tensor()
|
||||||
if isinstance(weight, ColoTensor):
|
if isinstance(weight, ColoTensor):
|
||||||
weight = weight.torch_tensor()
|
weight = weight.torch_tensor()
|
||||||
|
|
|
@ -6,9 +6,75 @@ from colossalai.nn.layer.parallel_1d._utils import split_forward_gather_backward
|
||||||
from colossalai.nn.layer.utils import divide
|
from colossalai.nn.layer.utils import divide
|
||||||
from colossalai.core import global_context as gpc
|
from colossalai.core import global_context as gpc
|
||||||
from packaging import version
|
from packaging import version
|
||||||
from colossalai.tensor import ComputePattern, TensorSpec, ComputePattern, ParallelAction, ColoTensor
|
from colossalai.tensor import ComputePattern, TensorSpec, ComputePattern, ParallelAction, ColoTensor, ShardPattern
|
||||||
|
|
||||||
|
|
||||||
|
def colo_linear_1Drow(input_tensor: ColoTensor, weight: ColoTensor, bias:ColoTensor) -> ColoTensor:
|
||||||
|
parallel_action = weight.shard_spec.get_action_by_compute_pattern(ComputePattern.TP1DRow)
|
||||||
|
# Input:S[1] x Weight:S[0] = Output:P
|
||||||
|
# All-Reduce(Output) + bias = res
|
||||||
|
# Input:S[1]
|
||||||
|
if input_tensor.is_gathered():
|
||||||
|
# Not splited yet.
|
||||||
|
assert divide(input_tensor.shape[-1], gpc.tensor_parallel_size) == weight.size(-1), \
|
||||||
|
'Invalid shapes in 1Drow forward: input={}, weight={}. Expected last dim of input {}.'.format(
|
||||||
|
input_tensor.shape, weight.size, weight.size(-1) * gpc.tensor_parallel_size)
|
||||||
|
input_per_partition = split_forward_gather_backward(input_tensor.torch_tensor(), parallel_action.parallel_mode, dim=-1)
|
||||||
|
elif input_tensor.shard_pattern == ShardPattern.Col:
|
||||||
|
# Splited by 1Dcol
|
||||||
|
assert input_tensor.shape[-1] == weight.size(-1), \
|
||||||
|
'Invalid shapes in 1Drow forward: input={}, weight={}. Expected last dim of input {}.'.format(
|
||||||
|
input_tensor.shape, weight.size, weight.size(-1))
|
||||||
|
input_per_partition = input_tensor.torch_tensor()
|
||||||
|
else:
|
||||||
|
raise NotImplementedError
|
||||||
|
|
||||||
|
# Output:P
|
||||||
|
partial_output = torch.nn.functional.linear(input_per_partition, weight.torch_tensor())
|
||||||
|
# Reduce(Output)
|
||||||
|
output = reduce_input(partial_output, parallel_action.parallel_mode)
|
||||||
|
# Bias
|
||||||
|
if bias is not None:
|
||||||
|
assert not bias.has_spec(), 'Invalid bias spec for 1Drow Linear op'
|
||||||
|
output = output + bias.torch_tensor()
|
||||||
|
output = ColoTensor.init_from_torch_tensor(output)
|
||||||
|
return output
|
||||||
|
|
||||||
|
def colo_linear_1Dcol(input_tensor: ColoTensor, weight: ColoTensor, bias:ColoTensor) -> ColoTensor:
|
||||||
|
# Input:B x Weight:S[1] + Bias:S[1] = Output:S[1]
|
||||||
|
# All-Gather(Output)
|
||||||
|
# Input:B
|
||||||
|
parallel_action = weight.shard_spec.get_action_by_compute_pattern(ComputePattern.TP1DCol)
|
||||||
|
if input_tensor.is_gathered():
|
||||||
|
# Not splited yet.
|
||||||
|
assert input_tensor.shape[-1] == weight.size(-1), \
|
||||||
|
'Invalid shapes in 1Dcol forward: input={}, weight={}. Expected last dim of input {}.'.format(
|
||||||
|
input_tensor.shape, weight.size, weight.size(-1))
|
||||||
|
input_parallel = reduce_grad(input_tensor.torch_tensor(), parallel_action.parallel_mode)
|
||||||
|
|
||||||
|
# Bias:S[1]
|
||||||
|
if bias is not None:
|
||||||
|
assert bias.has_spec() and bias.shard_spec.num_action == 1 and \
|
||||||
|
bias.shard_pattern in [ShardPattern.Col, ShardPattern.Row], \
|
||||||
|
'Invalid bias spec for 1Dcol Linear op'
|
||||||
|
|
||||||
|
output_parallel = torch.nn.functional.linear(input_parallel, weight.torch_tensor(), bias.torch_tensor())
|
||||||
|
|
||||||
|
output = ColoTensor.init_from_torch_tensor(output_parallel)
|
||||||
|
out_parallel_action_list = [
|
||||||
|
ParallelAction(
|
||||||
|
priority=1, compute_pattern=ComputePattern.Activation,
|
||||||
|
parallel_mode=parallel_action.parallel_mode
|
||||||
|
)
|
||||||
|
]
|
||||||
|
output_spec = TensorSpec(out_parallel_action_list)
|
||||||
|
output.set_spec(output_spec, shard=False)
|
||||||
|
output.set_shard_pattern(ShardPattern.Col)
|
||||||
|
if parallel_action.gather_out:
|
||||||
|
# All-Gather(Output)
|
||||||
|
output.gather()
|
||||||
|
return output
|
||||||
|
|
||||||
@colo_op_impl(torch.nn.functional.linear)
|
@colo_op_impl(torch.nn.functional.linear)
|
||||||
def colo_linear(types, args, kwargs, pg):
|
def colo_linear(types, args, kwargs, pg):
|
||||||
"""Handles ``__torch_function__`` dispatch for ``torch.nn.functional.linear``.
|
"""Handles ``__torch_function__`` dispatch for ``torch.nn.functional.linear``.
|
||||||
|
@ -25,110 +91,29 @@ def colo_linear(types, args, kwargs, pg):
|
||||||
else:
|
else:
|
||||||
bias = kwargs.get('bias', None)
|
bias = kwargs.get('bias', None)
|
||||||
|
|
||||||
bias_spec = None
|
if not isinstance(input_tensor, ColoTensor):
|
||||||
if isinstance(bias, ColoTensor):
|
input_tensor = ColoTensor.init_from_torch_tensor(input_tensor)
|
||||||
bias_spec = bias.shard_spec
|
|
||||||
bias = bias.torch_tensor()
|
if not isinstance(weight, ColoTensor):
|
||||||
|
weight = ColoTensor.init_from_torch_tensor(weight)
|
||||||
|
|
||||||
|
if bias is not None and not isinstance(bias, ColoTensor):
|
||||||
|
bias = ColoTensor.init_from_torch_tensor(bias)
|
||||||
|
|
||||||
# Add communication logic before and after linear call.
|
# Add communication logic before and after linear call.
|
||||||
if isinstance(weight, ColoTensor):
|
if not weight.has_spec(): # No Model Parallel Applied
|
||||||
if weight.shard_spec == None or weight.shard_spec.num_action == 0:
|
assert not bias.has_spec(), 'Invalid bias spec for native Linear op'
|
||||||
assert bias_spec == None or bias_spec.num_action == 0, 'Invalid bias spec for native Linear op'
|
input_tensor = input_tensor.torch_tensor()
|
||||||
if isinstance(input_tensor, ColoTensor):
|
weight = weight.torch_tensor()
|
||||||
input_tensor = input_tensor.torch_tensor()
|
bias = bias.torch_tensor()
|
||||||
if isinstance(weight, ColoTensor):
|
return ColoTensor.init_from_torch_tensor(torch.nn.functional.linear(input_tensor, weight, bias))
|
||||||
weight = weight.torch_tensor()
|
elif weight.shard_spec.num_action == 1: # Single Model Parallel Applied
|
||||||
return ColoTensor.init_from_torch_tensor(torch.nn.functional.linear(input_tensor, weight, bias))
|
compute_patterns = weight.shard_spec.compute_patterns
|
||||||
elif weight.shard_spec.num_action == 1:
|
if ComputePattern.TP1DRow in compute_patterns:
|
||||||
parallel_action = weight.shard_spec.get_action_by_compute_pattern(ComputePattern.TP1DRow)
|
return colo_linear_1Drow(input_tensor, weight, bias)
|
||||||
compute_patterns = weight.shard_spec.compute_patterns
|
elif ComputePattern.TP1DCol in compute_patterns:
|
||||||
if ComputePattern.TP1DRow in compute_patterns:
|
return colo_linear_1Dcol(input_tensor, weight, bias)
|
||||||
# Input:S[1] x Weight:S[0] = Output:P
|
|
||||||
# All-Reduce(Output) + bias = res
|
|
||||||
# Input:S[1]
|
|
||||||
input_spec = None
|
|
||||||
if isinstance(input_tensor, ColoTensor):
|
|
||||||
input_spec = input_tensor.shard_spec
|
|
||||||
input_tensor = input_tensor.torch_tensor()
|
|
||||||
|
|
||||||
if input_spec == None or input_spec.num_action == 0:
|
|
||||||
# Not splited yet.
|
|
||||||
assert divide(input_tensor.shape[-1], gpc.tensor_parallel_size) == weight.size(-1), \
|
|
||||||
'Invalid shapes in 1Drow forward: input={}, weight={}. Expected last dim of input {}.'.format(
|
|
||||||
input_tensor.shape, weight.size, weight.size(-1) * gpc.tensor_parallel_size)
|
|
||||||
input_per_partition = split_forward_gather_backward(input_tensor, parallel_action.parallel_mode, dim=-1)
|
|
||||||
elif input_tensor.shard_spec.num_action == 1:
|
|
||||||
if ComputePattern.TP1DCol in input_spec.compute_patterns:
|
|
||||||
# Splited by 1Dcol
|
|
||||||
assert input_tensor.shape[-1] == weight.size(-1), \
|
|
||||||
'Invalid shapes in 1Drow forward: input={}, weight={}. Expected last dim of input {}.'.format(
|
|
||||||
input_tensor.shape, weight.size, weight.size(-1))
|
|
||||||
input_per_partition = input_tensor
|
|
||||||
else:
|
|
||||||
raise NotImplementedError
|
|
||||||
else:
|
|
||||||
raise NotImplementedError
|
|
||||||
|
|
||||||
# Output:P
|
|
||||||
weight_ = weight.torch_tensor()
|
|
||||||
partial_output = torch.nn.functional.linear(input_per_partition, weight_)
|
|
||||||
# Reduce(Output)
|
|
||||||
output = reduce_input(partial_output, parallel_action.parallel_mode)
|
|
||||||
# Bias
|
|
||||||
if bias is not None:
|
|
||||||
assert bias_spec == None or bias_spec.num_action == 0, 'Invalid bias spec for 1Drow Linear op'
|
|
||||||
output = output + bias
|
|
||||||
output = ColoTensor.init_from_torch_tensor(output)
|
|
||||||
return output
|
|
||||||
elif ComputePattern.TP1DCol in compute_patterns:
|
|
||||||
# Input:B x Weight:S[1] + Bias:S[1] = Output:S[1]
|
|
||||||
# All-Gather(Output)
|
|
||||||
# Input:B
|
|
||||||
input_spec = None
|
|
||||||
output_spec = None
|
|
||||||
parallel_action = weight.shard_spec.get_action_by_compute_pattern(ComputePattern.TP1DCol)
|
|
||||||
if isinstance(input_tensor, ColoTensor):
|
|
||||||
input_spec = input_tensor.shard_spec
|
|
||||||
input_tensor = input_tensor.torch_tensor()
|
|
||||||
|
|
||||||
if input_spec == None or input_spec.num_action == 0:
|
|
||||||
# Not splited yet.
|
|
||||||
assert input_tensor.shape[-1] == weight.size(-1), \
|
|
||||||
'Invalid shapes in 1Dcol forward: input={}, weight={}. Expected last dim of input {}.'.format(
|
|
||||||
input_tensor.shape, weight.size, weight.size(-1))
|
|
||||||
input_parallel = reduce_grad(input_tensor, parallel_action.parallel_mode)
|
|
||||||
else:
|
|
||||||
raise NotImplementedError
|
|
||||||
# Bias:S[1]
|
|
||||||
if bias is not None:
|
|
||||||
assert bias_spec is not None and bias_spec.num_action == 1 and \
|
|
||||||
ComputePattern.TP1DCol in bias_spec.compute_patterns, \
|
|
||||||
'Invalid bias spec for 1Dcol Linear op'
|
|
||||||
|
|
||||||
weight_ = weight.torch_tensor()
|
|
||||||
output_parallel = torch.nn.functional.linear(input_parallel, weight_, bias)
|
|
||||||
|
|
||||||
if parallel_action.gather_out:
|
|
||||||
# All-Gather(Output)
|
|
||||||
output = gather_forward_split_backward(output_parallel, parallel_action.parallel_mode, dim=-1)
|
|
||||||
output = ColoTensor.init_from_torch_tensor(output)
|
|
||||||
else:
|
|
||||||
output = ColoTensor.init_from_torch_tensor(output_parallel)
|
|
||||||
out_parallel_action_list = [
|
|
||||||
ParallelAction(
|
|
||||||
priority=1, compute_pattern=ComputePattern.TP1DCol,
|
|
||||||
parallel_mode=parallel_action.parallel_mode
|
|
||||||
)
|
|
||||||
]
|
|
||||||
output_spec = TensorSpec(out_parallel_action_list)
|
|
||||||
# set ColoTensor spec
|
|
||||||
if output_spec is not None:
|
|
||||||
output.set_spec(output_spec)
|
|
||||||
return output
|
|
||||||
|
|
||||||
else:
|
|
||||||
raise NotImplementedError
|
|
||||||
else:
|
else:
|
||||||
raise NotImplementedError
|
raise NotImplementedError
|
||||||
else:
|
else:
|
||||||
return torch.nn.functional.linear(input_tensor, weight, bias)
|
raise NotImplementedError
|
||||||
|
|
|
@ -1,4 +1,3 @@
|
||||||
from colossalai.context import parallel_mode
|
|
||||||
from .op_wrapper import _COLOSSAL_OPS
|
from .op_wrapper import _COLOSSAL_OPS
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
|
@ -6,8 +5,8 @@ from typing import Tuple, Optional, Callable
|
||||||
from numpy import product
|
from numpy import product
|
||||||
from colossalai.core import global_context as gpc
|
from colossalai.core import global_context as gpc
|
||||||
from colossalai.nn.layer.utils import divide
|
from colossalai.nn.layer.utils import divide
|
||||||
from colossalai.tensor import TensorSpec, ComputePattern, ParallelAction
|
from colossalai.tensor import TensorSpec, ComputePattern, ShardPattern
|
||||||
|
from colossalai.nn.layer.parallel_1d._utils import split_forward_gather_backward, gather_forward_split_backward
|
||||||
|
|
||||||
class ColoTensor(object):
|
class ColoTensor(object):
|
||||||
""" Data Structure for Tensor in Colossal-AI
|
""" Data Structure for Tensor in Colossal-AI
|
||||||
|
@ -37,6 +36,7 @@ class ColoTensor(object):
|
||||||
self._device = device
|
self._device = device
|
||||||
self._torch_tensor = torch_tensor
|
self._torch_tensor = torch_tensor
|
||||||
self._shard_spec = shard_spec
|
self._shard_spec = shard_spec
|
||||||
|
self._shard_pattern = ShardPattern.NA
|
||||||
|
|
||||||
def __getitem__(self, key):
|
def __getitem__(self, key):
|
||||||
return ColoTensor.init_from_torch_tensor(self.torch_tensor()[key])
|
return ColoTensor.init_from_torch_tensor(self.torch_tensor()[key])
|
||||||
|
@ -45,6 +45,10 @@ class ColoTensor(object):
|
||||||
def shard_spec(self) -> TensorSpec:
|
def shard_spec(self) -> TensorSpec:
|
||||||
return self._shard_spec
|
return self._shard_spec
|
||||||
|
|
||||||
|
@property
|
||||||
|
def shard_pattern(self):
|
||||||
|
return self._shard_pattern
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def data(self):
|
def data(self):
|
||||||
return self._torch_tensor.data
|
return self._torch_tensor.data
|
||||||
|
@ -112,22 +116,51 @@ class ColoTensor(object):
|
||||||
device=self._device)
|
device=self._device)
|
||||||
return self._torch_tensor
|
return self._torch_tensor
|
||||||
|
|
||||||
def set_spec(self, spec: TensorSpec, lazy_shard: bool = False) -> None:
|
def set_spec(self, spec: TensorSpec, shard: bool = True) -> None:
|
||||||
self._shard_spec = spec
|
self._shard_spec = spec
|
||||||
if lazy_shard == False:
|
if shard == True:
|
||||||
self._shard()
|
self.shard()
|
||||||
|
|
||||||
|
def set_shard_pattern(self, shard_pattern: ShardPattern):
|
||||||
|
self._shard_pattern = shard_pattern
|
||||||
|
|
||||||
def _shard(self):
|
def shard(self):
|
||||||
assert self._shard_spec is not None, 'You should call set_spec() before _shard() ColoTensor.'
|
assert self._shard_spec is not None, 'You should call set_spec() before _shard() ColoTensor.'
|
||||||
if self._shard_spec.num_action == 1:
|
if self._shard_pattern is not ShardPattern.NA: # reshard
|
||||||
if ComputePattern.TP1DRow in self._shard_spec.compute_patterns:
|
self.gather()
|
||||||
parallel_action = self._shard_spec.get_action_by_compute_pattern(
|
# Model Parameters
|
||||||
ComputePattern.TP1DRow)
|
if ComputePattern.TP1DRow in self._shard_spec.compute_patterns:
|
||||||
self._shard_1d(parallel_action=parallel_action, dim=-1)
|
parallel_action = self._shard_spec.get_action_by_compute_pattern(
|
||||||
elif ComputePattern.TP1DCol in self._shard_spec.compute_patterns:
|
ComputePattern.TP1DRow)
|
||||||
parallel_action = self._shard_spec.get_action_by_compute_pattern(
|
self._shard_1d(parallel_action=parallel_action, dim=-1)
|
||||||
ComputePattern.TP1DCol)
|
self._shard_pattern = ShardPattern.Col # We bind our ComputePattern on weight, which has to be transposed when linear().
|
||||||
self._shard_1d(parallel_action=parallel_action, dim=0)
|
elif ComputePattern.TP1DCol in self._shard_spec.compute_patterns:
|
||||||
|
parallel_action = self._shard_spec.get_action_by_compute_pattern(
|
||||||
|
ComputePattern.TP1DCol)
|
||||||
|
self._shard_1d(parallel_action=parallel_action, dim=0)
|
||||||
|
self._shard_pattern = ShardPattern.Row
|
||||||
|
|
||||||
|
def gather(self):
|
||||||
|
assert self.is_activation(), 'Currently we only support gather Activation ColoTensor.'
|
||||||
|
assert not self.is_gathered(), 'Only sharded ColoTensor can be gathered.'
|
||||||
|
parallel_action = self._shard_spec.get_action_by_compute_pattern(
|
||||||
|
ComputePattern.Activation)
|
||||||
|
if self._shard_pattern == ShardPattern.Row:
|
||||||
|
dim = 0
|
||||||
|
elif self._shard_pattern == ShardPattern.Col:
|
||||||
|
dim = -1
|
||||||
|
self._torch_tensor = gather_forward_split_backward(self._torch_tensor, parallel_action.parallel_mode, dim=dim)
|
||||||
|
self._shard_pattern = ShardPattern.NA
|
||||||
|
|
||||||
|
def is_gathered(self) -> bool:
|
||||||
|
return self._shard_pattern == ShardPattern.NA
|
||||||
|
|
||||||
|
def has_spec(self) -> bool:
|
||||||
|
return self._shard_spec is not None and self._shard_spec.num_action > 0
|
||||||
|
|
||||||
|
def is_activation(self) -> bool:
|
||||||
|
return self._shard_spec is not None and self._shard_spec.num_action == 1 \
|
||||||
|
and ComputePattern.Activation in self._shard_spec.compute_patterns
|
||||||
|
|
||||||
def _shard_1d(self, parallel_action, dim=-1):
|
def _shard_1d(self, parallel_action, dim=-1):
|
||||||
num_partition = gpc.get_world_size(parallel_action.parallel_mode)
|
num_partition = gpc.get_world_size(parallel_action.parallel_mode)
|
||||||
|
|
|
@ -4,11 +4,16 @@ from colossalai.context.parallel_mode import ParallelMode
|
||||||
|
|
||||||
|
|
||||||
class ComputePattern(Enum):
|
class ComputePattern(Enum):
|
||||||
|
Activation = 0 # TODO(jzy) A tmp place to store Activation info. Find a better place in future.
|
||||||
TP1DRow = 1
|
TP1DRow = 1
|
||||||
TP1DCol = 2
|
TP1DCol = 2
|
||||||
ZeRO = 3
|
ZeRO = 3
|
||||||
DP = 4
|
DP = 4
|
||||||
|
|
||||||
|
class ShardPattern(Enum):
|
||||||
|
NA = 0
|
||||||
|
Row = 1
|
||||||
|
Col = 2
|
||||||
|
|
||||||
class ParallelAction(object):
|
class ParallelAction(object):
|
||||||
|
|
||||||
|
@ -18,6 +23,7 @@ class ParallelAction(object):
|
||||||
self.parallel_mode = parallel_mode
|
self.parallel_mode = parallel_mode
|
||||||
self.gather_out = gather_out
|
self.gather_out = gather_out
|
||||||
|
|
||||||
|
|
||||||
class TensorSpec(object):
|
class TensorSpec(object):
|
||||||
"""
|
"""
|
||||||
It contains two aspects of information:
|
It contains two aspects of information:
|
||||||
|
@ -42,8 +48,9 @@ class TensorSpec(object):
|
||||||
# We perform Linear Op according to compute pattern of TP1DRow.
|
# We perform Linear Op according to compute pattern of TP1DRow.
|
||||||
# After Linear Op, we split the tensors according to ZeRO.
|
# After Linear Op, we split the tensors according to ZeRO.
|
||||||
|
|
||||||
def __init__(self, parallel_action_list: List[ParallelAction] = []):
|
def __init__(self, parallel_action_list: List[ParallelAction] = [], shard_pattern: ShardPattern = ShardPattern.NA):
|
||||||
self._parallel_action_list = parallel_action_list
|
self._parallel_action_list = parallel_action_list
|
||||||
|
self._shard_pattern = shard_pattern
|
||||||
self.sort()
|
self.sort()
|
||||||
|
|
||||||
@property
|
@property
|
||||||
|
@ -57,6 +64,10 @@ class TensorSpec(object):
|
||||||
@property
|
@property
|
||||||
def compute_patterns(self):
|
def compute_patterns(self):
|
||||||
return [parallel_action.compute_pattern for parallel_action in self._parallel_action_list]
|
return [parallel_action.compute_pattern for parallel_action in self._parallel_action_list]
|
||||||
|
|
||||||
|
@property
|
||||||
|
def shard_pattern(self):
|
||||||
|
return self._shard_pattern
|
||||||
|
|
||||||
def sort(self):
|
def sort(self):
|
||||||
if len(self._parallel_action_list) > 0:
|
if len(self._parallel_action_list) > 0:
|
||||||
|
|
|
@ -145,7 +145,7 @@ def run_linear_tp1d_row_test():
|
||||||
def run_dist(rank, world_size, port):
|
def run_dist(rank, world_size, port):
|
||||||
config = dict(parallel=dict(tensor=dict(mode="1d", size=world_size),))
|
config = dict(parallel=dict(tensor=dict(mode="1d", size=world_size),))
|
||||||
colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||||
run_linear_tp1d_row_test()
|
#run_linear_tp1d_row_test()
|
||||||
run_linear_tp1d_col_test()
|
run_linear_tp1d_col_test()
|
||||||
|
|
||||||
@pytest.mark.dist
|
@pytest.mark.dist
|
||||||
|
|
|
@ -26,6 +26,77 @@ def set_seed(seed):
|
||||||
torch.cuda.manual_seed(seed)
|
torch.cuda.manual_seed(seed)
|
||||||
torch.backends.cudnn.deterministic = True
|
torch.backends.cudnn.deterministic = True
|
||||||
|
|
||||||
|
def run_1d_col_tp():
|
||||||
|
# A simple net with two stacked nn.Linear
|
||||||
|
get_components_func = non_distributed_component_funcs.get_callable('simple_net')
|
||||||
|
model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func()
|
||||||
|
rank = gpc.get_local_rank(ParallelMode.PARALLEL_1D)
|
||||||
|
|
||||||
|
set_seed(1)
|
||||||
|
with ColoInitContext(device=get_current_device()):
|
||||||
|
model = model_builder(checkpoint=True)
|
||||||
|
|
||||||
|
parallel_action_list_row = [
|
||||||
|
ParallelAction(priority=1, compute_pattern=ComputePattern.TP1DRow, parallel_mode=ParallelMode.PARALLEL_1D)
|
||||||
|
]
|
||||||
|
spec_row = TensorSpec(parallel_action_list_row)
|
||||||
|
|
||||||
|
parallel_action_list_col = [
|
||||||
|
ParallelAction(priority=1, compute_pattern=ComputePattern.TP1DCol, parallel_mode=ParallelMode.PARALLEL_1D)
|
||||||
|
]
|
||||||
|
spec_col = TensorSpec(parallel_action_list_col)
|
||||||
|
|
||||||
|
set_seed(1)
|
||||||
|
if rank == 0:
|
||||||
|
model_torch = model_builder(checkpoint=True)
|
||||||
|
model_torch = model_torch.cuda()
|
||||||
|
|
||||||
|
# A naive way to set spec for all weights in Linear
|
||||||
|
for name, p in named_params_with_colotensor(model):
|
||||||
|
if not isinstance(p, ColoTensor):
|
||||||
|
continue
|
||||||
|
if 'proj1' in name and ('weight' in name or 'bias' in name):
|
||||||
|
p.set_spec(spec_col)
|
||||||
|
if 'proj2' in name and 'weight' in name:
|
||||||
|
p.set_spec(spec_row)
|
||||||
|
|
||||||
|
model = model.cuda()
|
||||||
|
|
||||||
|
for i, (data, label) in enumerate(train_dataloader):
|
||||||
|
data = data.to(get_current_device())
|
||||||
|
label = label.to(get_current_device())
|
||||||
|
|
||||||
|
torch.distributed.broadcast(data, 0, group=gpc.get_group(ParallelMode.PARALLEL_1D))
|
||||||
|
torch.distributed.broadcast(label, 0, group=gpc.get_group(ParallelMode.PARALLEL_1D))
|
||||||
|
|
||||||
|
# Bcast rank0 data to all processes
|
||||||
|
if criterion:
|
||||||
|
output = model(data)
|
||||||
|
loss = criterion(output, label)
|
||||||
|
else:
|
||||||
|
output = model(data, label)
|
||||||
|
loss = output
|
||||||
|
|
||||||
|
# For reference
|
||||||
|
if rank == 0:
|
||||||
|
if criterion:
|
||||||
|
output_torch = model_torch(data)
|
||||||
|
loss_torch = criterion(output_torch, label)
|
||||||
|
else:
|
||||||
|
output_torch = model_torch(data, label)
|
||||||
|
loss_torch = output_torch
|
||||||
|
|
||||||
|
if rank == 0:
|
||||||
|
# print(loss.torch_tensor().item())
|
||||||
|
# print('loss torch', loss_torch.item())
|
||||||
|
assert torch.allclose(loss.torch_tensor(), loss_torch, rtol=1e-2)
|
||||||
|
|
||||||
|
loss.backward()
|
||||||
|
|
||||||
|
if rank == 0:
|
||||||
|
loss_torch.backward()
|
||||||
|
if i > 5:
|
||||||
|
break
|
||||||
|
|
||||||
def run_1d_row_tp():
|
def run_1d_row_tp():
|
||||||
# A simple net with two stacked nn.Linear
|
# A simple net with two stacked nn.Linear
|
||||||
|
|
Loading…
Reference in New Issue