[fx] Add unit test and fix bugs for transform_mlp_pass (#1299)

* add test and fix bugs

* add functions back

* add comments
pull/1323/head
XYE 2 years ago committed by GitHub
parent 1b41686461
commit ca2d3f284f
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -1,59 +1,90 @@
import torch
from colossalai.tensor import ColoTensorSpec, distspec, ProcessGroup, ComputeSpec, ComputePattern, ShardSpec
import operator
import colossalai
ELEMENTWISE_MODULE_OP = [torch.nn.Dropout, torch.nn.ReLU, torch.nn.Conv1d, torch.nn.Conv2d, torch.nn.Conv3d, torch.nn.MaxPool1d, torch.nn.MaxPool2d, torch.nn.AvgPool1d, torch.nn.AvgPool2d]
ELEMENTWISE_FUNC_OP = [torch.add, operator.add, torch.abs, torch.cos, torch.exp, torch.mul, operator.mul, operator.floordiv, operator.truediv, operator.neg, torch.multiply, torch.nn.functional.relu, torch.nn.functional.dropout, torch.nn.functional.conv1d, torch.nn.functional.conv2d, torch.nn.functional.conv3d, torch.nn.functional.avg_pool1d, torch.nn.functional.avg_pool2d, torch.nn.functional.avg_pool3d, torch.nn.functional.max_pool1d, torch.nn.functional.max_pool2d, torch.nn.functional.max_pool3d]
def weight_split(weight: torch.Tensor, dim: int) -> torch.nn.parameter.Parameter:
def weight_split(weight: torch.nn.parameter.Parameter, dim: int, col_normal: bool) -> torch.nn.parameter.Parameter:
"""weight_split
split a nn.Parameter
Args:
weight (torch.nn.parameter.Parameter): a torch Parameter instance
dim (int): the dimension to be sharded along with
col_normal(bool): col shard with gather or not
Returns:
_type_: _description_
"""
# Append a Tensor spec to target_module.weight.shard
# Convert to ColoTensor: colo_tensor = ColoTensor.from_torch_tensor(tensor, spec)
assert isinstance(weight, torch.Tensor), \
f'The type of the input tensor should be torch.nn.parameter' \
f'Your Input tensor is {type(weight)}'
# FIXME() I initialized a PG for this tensor. Only has TP comm group.
# we only consider the TP-only caes.
world_size = torch.distributed.get_world_size()
pg = ProcessGroup(tp_degree=world_size)
spec = ColoTensorSpec(pg, ShardSpec([dim], [pg.tp_world_size()]), ComputeSpec(ComputePattern.TP1D))
# As you has constructed a Spec, why not directly convert the tensor to ColoTensor.
setattr(weight, "fx_attr", spec)
if col_normal:
setattr(weight, "fx_attr", (dim, "SHARD", "TP", "col_normal"))
else:
setattr(weight, "fx_attr", (dim, "SHARD", "TP", "col_needs_many_outputs"))
return weight
def column_shard_linear_pass(gm: torch.fx.GraphModule):
# Split all the linear module with column shard. Currently for testing only.
mod_graph = gm.graph
for node in mod_graph.nodes:
if node.op == "call_module":
target_module = node.graph.owning_module.get_submodule(node.target)
if isinstance(target_module, torch.nn.Linear):
target_module.weight = weight_split(target_module.weight, dim=0)
target_module.weight = weight_split(target_module.weight, dim=0, col_normal=False)
if target_module.bias is not None:
target_module.bias.data = weight_split(target_module.bias.data, dim=0)
target_module.bias.data = weight_split(target_module.bias.data, dim=0, col_normal=False)
gm.recompile()
return gm
def row_shard_linear_pass(gm: torch.fx.GraphModule):
# Split all the linear module with row shard. Currently for testing only.
mod_graph = gm.graph
for node in mod_graph.nodes:
if node.op == "call_module":
target_module = node.graph.owning_module.get_submodule(node.target)
if isinstance(target_module, torch.nn.Linear):
target_module.weight = weight_split(target_module.weight, dim=-1)
target_module.weight = weight_split(target_module.weight, dim=-1, col_normal=False)
gm.recompile()
return gm
#TODO: add elementwise op process pass, then we can try to use column and row mixed strategy.
def transform_mlp_pass(gm: torch.fx.GraphModule):
#TODO: Needs to handle special cases, like x = linear(x) + linear(x)
mod_graph = gm.graph
col_shard = True
element_op = []
all_linear_name = []
linear_name = []
# Get the name of element wise module(torch.nn.ReLU)
# Get the name of all the linear modules and repeated linear modules
for name, func in gm.named_children():
if not isinstance(func, torch.nn.Linear):
for i in ELEMENTWISE_MODULE_OP:
if isinstance(func, i):
element_op.append(name)
break
else:
if name in all_linear_name:
if name in linear_name:
linear_name.remove(name)
else:
all_linear_name.append(name)
linear_name.append(name)
# If the linear modules is called multiple times, set the dist spec as col shard
# If the module is element wise or the function/method is element wise, remains col_shard
for node in mod_graph.nodes:
if node.target in linear_name:
target_module = node.graph.owning_module.get_submodule(node.target)
dim = 0 if col_shard else -1
target_module.weight = weight_split(target_module.weight, dim=dim, col_normal=False)
col_shard = not col_shard
elif node.target in all_linear_name:
target_module = node.graph.owning_module.get_submodule(node.target)
dim = 0 if col_shard else -1
target_module.weight = weight_split(target_module.weight, dim=dim, col_normal=True)
col_shard = not col_shard
else:
if node.target not in element_op and all(node.target != i for i in ELEMENTWISE_FUNC_OP):
col_shard = True
gm.recompile()
return gm

@ -0,0 +1,59 @@
import torch
import torch.nn as nn
import pytest
import colossalai
from colossalai.fx import ColoTracer
from colossalai.fx.passes.shard_1d_pass import transform_mlp_pass
CONFIG = dict(parallel=dict(tensor=dict(size=2, mode='1d')))
class MLP(torch.nn.Module):
def __init__(self, dim: int):
super().__init__()
self.linear1 = torch.nn.Linear(dim, dim)
self.linear2 = torch.nn.Linear(dim, dim)
self.linear3 = torch.nn.Linear(dim, dim)
self.linear4 = torch.nn.Linear(dim, dim)
self.dropout = torch.nn.Dropout()
self.relu = torch.nn.ReLU()
def forward(self, x):
x = self.relu(self.linear1(x))
x = self.dropout(self.relu(self.linear2(x)))
x = self.linear3(x)
x = torch.nn.functional.relu(self.linear4(x))
return x
def test_out_acc():
model = MLP(16).cuda()
model.eval()
input_tensor = torch.rand(2, 16).cuda()
output = model(input_tensor)
tracer = ColoTracer()
graph = tracer.trace(model, meta_args={'x': torch.randn((2, 16), device="meta")})
gm = torch.fx.GraphModule(model, graph, model.__class__.__name__)
splitted_gm = transform_mlp_pass(gm)
new_output = splitted_gm(input_tensor)
assert output.equal(new_output)
def test_linear_acc():
input_tensor = torch.rand(2, 16).cuda()
model = MLP(16).cuda()
tracer = ColoTracer()
graph = tracer.trace(model, meta_args={'x': torch.randn((2, 16), device="meta")})
gm = torch.fx.GraphModule(model, graph, model.__class__.__name__)
splitted_gm = transform_mlp_pass(gm)
col_shard = True
for node in splitted_gm.graph.nodes:
if node.op == "call_module" and isinstance(node.graph.owning_module.get_submodule(node.target), torch.nn.Linear):
target_module = node.graph.owning_module.get_submodule(node.target)
dim = 0 if col_shard else -1
assert target_module.weight.fx_attr == (dim, "SHARD", "TP", "col_needs_many_outputs")
col_shard = not col_shard
if __name__ == "__main__":
torch.manual_seed(1)
torch.cuda.manual_seed(1)
# colossalai.launch_from_torch(config=CONFIG)
test_out_acc()
test_linear_acc()
Loading…
Cancel
Save