mirror of https://github.com/hpcaitech/ColossalAI
[fx] Add unit test and fix bugs for transform_mlp_pass (#1299)
* add test and fix bugs * add functions back * add commentspull/1323/head
parent
1b41686461
commit
ca2d3f284f
@ -1,59 +1,90 @@
|
||||
import torch
|
||||
from colossalai.tensor import ColoTensorSpec, distspec, ProcessGroup, ComputeSpec, ComputePattern, ShardSpec
|
||||
import operator
|
||||
import colossalai
|
||||
|
||||
ELEMENTWISE_MODULE_OP = [torch.nn.Dropout, torch.nn.ReLU, torch.nn.Conv1d, torch.nn.Conv2d, torch.nn.Conv3d, torch.nn.MaxPool1d, torch.nn.MaxPool2d, torch.nn.AvgPool1d, torch.nn.AvgPool2d]
|
||||
ELEMENTWISE_FUNC_OP = [torch.add, operator.add, torch.abs, torch.cos, torch.exp, torch.mul, operator.mul, operator.floordiv, operator.truediv, operator.neg, torch.multiply, torch.nn.functional.relu, torch.nn.functional.dropout, torch.nn.functional.conv1d, torch.nn.functional.conv2d, torch.nn.functional.conv3d, torch.nn.functional.avg_pool1d, torch.nn.functional.avg_pool2d, torch.nn.functional.avg_pool3d, torch.nn.functional.max_pool1d, torch.nn.functional.max_pool2d, torch.nn.functional.max_pool3d]
|
||||
|
||||
def weight_split(weight: torch.Tensor, dim: int) -> torch.nn.parameter.Parameter:
|
||||
def weight_split(weight: torch.nn.parameter.Parameter, dim: int, col_normal: bool) -> torch.nn.parameter.Parameter:
|
||||
"""weight_split
|
||||
split a nn.Parameter
|
||||
|
||||
Args:
|
||||
weight (torch.nn.parameter.Parameter): a torch Parameter instance
|
||||
dim (int): the dimension to be sharded along with
|
||||
|
||||
col_normal(bool): col shard with gather or not
|
||||
Returns:
|
||||
_type_: _description_
|
||||
"""
|
||||
# Append a Tensor spec to target_module.weight.shard
|
||||
# Convert to ColoTensor: colo_tensor = ColoTensor.from_torch_tensor(tensor, spec)
|
||||
assert isinstance(weight, torch.Tensor), \
|
||||
f'The type of the input tensor should be torch.nn.parameter' \
|
||||
f'Your Input tensor is {type(weight)}'
|
||||
|
||||
# FIXME() I initialized a PG for this tensor. Only has TP comm group.
|
||||
# we only consider the TP-only caes.
|
||||
world_size = torch.distributed.get_world_size()
|
||||
pg = ProcessGroup(tp_degree=world_size)
|
||||
|
||||
spec = ColoTensorSpec(pg, ShardSpec([dim], [pg.tp_world_size()]), ComputeSpec(ComputePattern.TP1D))
|
||||
# As you has constructed a Spec, why not directly convert the tensor to ColoTensor.
|
||||
setattr(weight, "fx_attr", spec)
|
||||
if col_normal:
|
||||
setattr(weight, "fx_attr", (dim, "SHARD", "TP", "col_normal"))
|
||||
else:
|
||||
setattr(weight, "fx_attr", (dim, "SHARD", "TP", "col_needs_many_outputs"))
|
||||
return weight
|
||||
|
||||
|
||||
def column_shard_linear_pass(gm: torch.fx.GraphModule):
|
||||
# Split all the linear module with column shard. Currently for testing only.
|
||||
mod_graph = gm.graph
|
||||
for node in mod_graph.nodes:
|
||||
if node.op == "call_module":
|
||||
target_module = node.graph.owning_module.get_submodule(node.target)
|
||||
if isinstance(target_module, torch.nn.Linear):
|
||||
target_module.weight = weight_split(target_module.weight, dim=0)
|
||||
target_module.weight = weight_split(target_module.weight, dim=0, col_normal=False)
|
||||
if target_module.bias is not None:
|
||||
target_module.bias.data = weight_split(target_module.bias.data, dim=0)
|
||||
target_module.bias.data = weight_split(target_module.bias.data, dim=0, col_normal=False)
|
||||
|
||||
gm.recompile()
|
||||
return gm
|
||||
|
||||
|
||||
def row_shard_linear_pass(gm: torch.fx.GraphModule):
|
||||
# Split all the linear module with row shard. Currently for testing only.
|
||||
mod_graph = gm.graph
|
||||
for node in mod_graph.nodes:
|
||||
if node.op == "call_module":
|
||||
target_module = node.graph.owning_module.get_submodule(node.target)
|
||||
if isinstance(target_module, torch.nn.Linear):
|
||||
target_module.weight = weight_split(target_module.weight, dim=-1)
|
||||
target_module.weight = weight_split(target_module.weight, dim=-1, col_normal=False)
|
||||
|
||||
gm.recompile()
|
||||
return gm
|
||||
|
||||
|
||||
#TODO: add elementwise op process pass, then we can try to use column and row mixed strategy.
|
||||
def transform_mlp_pass(gm: torch.fx.GraphModule):
|
||||
#TODO: Needs to handle special cases, like x = linear(x) + linear(x)
|
||||
mod_graph = gm.graph
|
||||
col_shard = True
|
||||
element_op = []
|
||||
all_linear_name = []
|
||||
linear_name = []
|
||||
# Get the name of element wise module(torch.nn.ReLU)
|
||||
# Get the name of all the linear modules and repeated linear modules
|
||||
for name, func in gm.named_children():
|
||||
if not isinstance(func, torch.nn.Linear):
|
||||
for i in ELEMENTWISE_MODULE_OP:
|
||||
if isinstance(func, i):
|
||||
element_op.append(name)
|
||||
break
|
||||
else:
|
||||
if name in all_linear_name:
|
||||
if name in linear_name:
|
||||
linear_name.remove(name)
|
||||
else:
|
||||
all_linear_name.append(name)
|
||||
linear_name.append(name)
|
||||
# If the linear modules is called multiple times, set the dist spec as col shard
|
||||
# If the module is element wise or the function/method is element wise, remains col_shard
|
||||
for node in mod_graph.nodes:
|
||||
if node.target in linear_name:
|
||||
target_module = node.graph.owning_module.get_submodule(node.target)
|
||||
dim = 0 if col_shard else -1
|
||||
target_module.weight = weight_split(target_module.weight, dim=dim, col_normal=False)
|
||||
col_shard = not col_shard
|
||||
elif node.target in all_linear_name:
|
||||
target_module = node.graph.owning_module.get_submodule(node.target)
|
||||
dim = 0 if col_shard else -1
|
||||
target_module.weight = weight_split(target_module.weight, dim=dim, col_normal=True)
|
||||
col_shard = not col_shard
|
||||
else:
|
||||
if node.target not in element_op and all(node.target != i for i in ELEMENTWISE_FUNC_OP):
|
||||
col_shard = True
|
||||
gm.recompile()
|
||||
return gm
|
@ -0,0 +1,59 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import pytest
|
||||
import colossalai
|
||||
from colossalai.fx import ColoTracer
|
||||
from colossalai.fx.passes.shard_1d_pass import transform_mlp_pass
|
||||
CONFIG = dict(parallel=dict(tensor=dict(size=2, mode='1d')))
|
||||
|
||||
class MLP(torch.nn.Module):
|
||||
|
||||
def __init__(self, dim: int):
|
||||
super().__init__()
|
||||
self.linear1 = torch.nn.Linear(dim, dim)
|
||||
self.linear2 = torch.nn.Linear(dim, dim)
|
||||
self.linear3 = torch.nn.Linear(dim, dim)
|
||||
self.linear4 = torch.nn.Linear(dim, dim)
|
||||
self.dropout = torch.nn.Dropout()
|
||||
self.relu = torch.nn.ReLU()
|
||||
|
||||
def forward(self, x):
|
||||
x = self.relu(self.linear1(x))
|
||||
x = self.dropout(self.relu(self.linear2(x)))
|
||||
x = self.linear3(x)
|
||||
x = torch.nn.functional.relu(self.linear4(x))
|
||||
return x
|
||||
|
||||
def test_out_acc():
|
||||
model = MLP(16).cuda()
|
||||
model.eval()
|
||||
input_tensor = torch.rand(2, 16).cuda()
|
||||
output = model(input_tensor)
|
||||
tracer = ColoTracer()
|
||||
graph = tracer.trace(model, meta_args={'x': torch.randn((2, 16), device="meta")})
|
||||
gm = torch.fx.GraphModule(model, graph, model.__class__.__name__)
|
||||
splitted_gm = transform_mlp_pass(gm)
|
||||
new_output = splitted_gm(input_tensor)
|
||||
assert output.equal(new_output)
|
||||
|
||||
def test_linear_acc():
|
||||
input_tensor = torch.rand(2, 16).cuda()
|
||||
model = MLP(16).cuda()
|
||||
tracer = ColoTracer()
|
||||
graph = tracer.trace(model, meta_args={'x': torch.randn((2, 16), device="meta")})
|
||||
gm = torch.fx.GraphModule(model, graph, model.__class__.__name__)
|
||||
splitted_gm = transform_mlp_pass(gm)
|
||||
col_shard = True
|
||||
for node in splitted_gm.graph.nodes:
|
||||
if node.op == "call_module" and isinstance(node.graph.owning_module.get_submodule(node.target), torch.nn.Linear):
|
||||
target_module = node.graph.owning_module.get_submodule(node.target)
|
||||
dim = 0 if col_shard else -1
|
||||
assert target_module.weight.fx_attr == (dim, "SHARD", "TP", "col_needs_many_outputs")
|
||||
col_shard = not col_shard
|
||||
|
||||
if __name__ == "__main__":
|
||||
torch.manual_seed(1)
|
||||
torch.cuda.manual_seed(1)
|
||||
# colossalai.launch_from_torch(config=CONFIG)
|
||||
test_out_acc()
|
||||
test_linear_acc()
|
Loading…
Reference in new issue