mirror of https://github.com/hpcaitech/ColossalAI
[pipelinable]use ColoTensor to replace dummy tensor. (#853)
parent
bcc8655021
commit
c6930d8ddf
|
@ -53,6 +53,22 @@ class ColoTensor(object):
|
||||||
def size(self):
|
def size(self):
|
||||||
return self._size
|
return self._size
|
||||||
|
|
||||||
|
@property
|
||||||
|
def shape(self):
|
||||||
|
return torch.Size(self._size)
|
||||||
|
|
||||||
|
def size(self, dim=None):
|
||||||
|
if dim is None:
|
||||||
|
return self.shape
|
||||||
|
return self._size[dim]
|
||||||
|
|
||||||
|
def dim(self):
|
||||||
|
return len(self._size)
|
||||||
|
|
||||||
|
def normal_(self, mean=0., std=1.):
|
||||||
|
torch_tensor = self.torch_tensor()
|
||||||
|
return torch_tensor.normal_(mean=mean, std=std)
|
||||||
|
|
||||||
def numel(self):
|
def numel(self):
|
||||||
return product(self._size)
|
return product(self._size)
|
||||||
|
|
||||||
|
|
|
@ -3,6 +3,7 @@ import functools
|
||||||
from colossalai.utils.model.utils import _substitute_init_recursively, InsertPostInitMethodToModuleSubClasses, call_to_str
|
from colossalai.utils.model.utils import _substitute_init_recursively, InsertPostInitMethodToModuleSubClasses, call_to_str
|
||||||
from colossalai.builder.pipeline import partition_uniform, partition_balanced
|
from colossalai.builder.pipeline import partition_uniform, partition_balanced
|
||||||
from colossalai.core import global_context as gpc
|
from colossalai.core import global_context as gpc
|
||||||
|
from colossalai.tensor import ColoTensor
|
||||||
|
|
||||||
|
|
||||||
class PipelinableContext(InsertPostInitMethodToModuleSubClasses):
|
class PipelinableContext(InsertPostInitMethodToModuleSubClasses):
|
||||||
|
@ -64,8 +65,15 @@ class PipelinableContext(InsertPostInitMethodToModuleSubClasses):
|
||||||
layer_spec = LayerSpec(module.__class__, *modified_args, **kwargs)
|
layer_spec = LayerSpec(module.__class__, *modified_args, **kwargs)
|
||||||
layer_spec.set_children(module.children())
|
layer_spec.set_children(module.children())
|
||||||
self._layer_spec_dict[module_id] = layer_spec
|
self._layer_spec_dict[module_id] = layer_spec
|
||||||
for param in module.parameters(recurse=False):
|
name_list = []
|
||||||
param.data = torch.rand(1, 1)
|
for name, param in module.named_parameters():
|
||||||
|
if isinstance(param, ColoTensor):
|
||||||
|
continue
|
||||||
|
name_list.append((name, param))
|
||||||
|
|
||||||
|
for name, param in name_list:
|
||||||
|
delattr(module, name)
|
||||||
|
setattr(module, name, ColoTensor.init_from_torch_tensor(tensor=param, save_payload=False))
|
||||||
|
|
||||||
def to_layer_list(self, exec_seq=None):
|
def to_layer_list(self, exec_seq=None):
|
||||||
"""
|
"""
|
||||||
|
|
Loading…
Reference in New Issue