mirror of https://github.com/hpcaitech/ColossalAI
[pipeline] add bert_for_pretraining bert_lmhead forward and policy (#4172)
* add pipeline policy and bert forward to be done * add bertmodel pipeline forward and make tests * add Bert_Policy and test for policy * update formatting * update formatting * update the code * fix bugs * fix name confilt * add bloom model and policy ,revise the base class of policy * revise * revision * add bert_for_pretraining * add bert_for_pretraining forward and policy * fix typos * cancel warning * change the imediate output to default dict * change the default output of get_shared_paramspull/4445/head
parent
d35bd7d0e6
commit
c5ea728016
|
@ -10,9 +10,15 @@ from transformers.modeling_outputs import (
|
|||
BaseModelOutputWithPast,
|
||||
BaseModelOutputWithPastAndCrossAttentions,
|
||||
BaseModelOutputWithPoolingAndCrossAttentions,
|
||||
CausalLMOutputWithCrossAttentions,
|
||||
)
|
||||
from transformers.models.bert.modeling_bert import BertForPreTraining, BertForPreTrainingOutput, BertModel
|
||||
from transformers.utils import logging
|
||||
from transformers.models.bert.modeling_bert import (
|
||||
BertForPreTraining,
|
||||
BertForPreTrainingOutput,
|
||||
BertLMHeadModel,
|
||||
BertModel,
|
||||
)
|
||||
from transformers.utils import ModelOutput, logging
|
||||
|
||||
from colossalai.pipeline.stage_manager import PipelineStageManager
|
||||
|
||||
|
@ -22,24 +28,23 @@ logger = logging.get_logger(__name__)
|
|||
|
||||
|
||||
def bert_model_forward(
|
||||
self: BertModel,
|
||||
input_ids: Optional[torch.Tensor] = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
token_type_ids: Optional[torch.Tensor] = None,
|
||||
position_ids: Optional[torch.Tensor] = None,
|
||||
head_mask: Optional[torch.Tensor] = None,
|
||||
inputs_embeds: Optional[torch.Tensor] = None,
|
||||
encoder_hidden_states: Optional[torch.Tensor] = None,
|
||||
encoder_attention_mask: Optional[torch.Tensor] = None,
|
||||
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
||||
self: BertModel,
|
||||
input_ids: Optional[torch.Tensor] = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
token_type_ids: Optional[torch.Tensor] = None,
|
||||
position_ids: Optional[torch.Tensor] = None,
|
||||
head_mask: Optional[torch.Tensor] = None,
|
||||
inputs_embeds: Optional[torch.Tensor] = None,
|
||||
encoder_hidden_states: Optional[torch.Tensor] = None,
|
||||
encoder_attention_mask: Optional[torch.Tensor] = None,
|
||||
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
||||
# labels: Optional[torch.LongTensor] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
stage_manager: Optional[PipelineStageManager] = None,
|
||||
# this is from the previous stage
|
||||
hidden_states: Optional[torch.FloatTensor] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
stage_manager: Optional[PipelineStageManager] = None,
|
||||
hidden_states: Optional[torch.FloatTensor] = None, # this is from the previous stage
|
||||
):
|
||||
# TODO: add explaination of the output here.
|
||||
r"""
|
||||
|
@ -85,10 +90,6 @@ def bert_model_forward(
|
|||
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
||||
batch_size, seq_length = input_shape
|
||||
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
||||
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
||||
# ourselves in which case we just need to make it broadcastable to all heads.
|
||||
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape)
|
||||
attention_mask = extended_attention_mask
|
||||
else:
|
||||
input_shape = hidden_states.size()[:-1]
|
||||
batch_size, seq_length = input_shape
|
||||
|
@ -119,22 +120,10 @@ def bert_model_forward(
|
|||
else:
|
||||
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
|
||||
|
||||
# Prepare head mask if needed
|
||||
# 1.0 in head_mask indicate we keep the head
|
||||
# attention_probs has shape bsz x n_heads x N x N
|
||||
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
||||
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
||||
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
||||
|
||||
hidden_states = hidden_states if hidden_states is not None else None
|
||||
if stage_manager.is_first_stage():
|
||||
hidden_states = self.embeddings(
|
||||
input_ids=input_ids,
|
||||
position_ids=position_ids,
|
||||
token_type_ids=token_type_ids,
|
||||
inputs_embeds=inputs_embeds,
|
||||
past_key_values_length=past_key_values_length,
|
||||
)
|
||||
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
||||
# ourselves in which case we just need to make it broadcastable to all heads.
|
||||
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape)
|
||||
attention_mask = extended_attention_mask
|
||||
# If a 2D or 3D attention mask is provided for the cross-attention
|
||||
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
||||
if self.config.is_decoder and encoder_hidden_states is not None:
|
||||
|
@ -146,7 +135,24 @@ def bert_model_forward(
|
|||
else:
|
||||
encoder_extended_attention_mask = None
|
||||
|
||||
# inherit from bert_layer
|
||||
# Prepare head mask if needed
|
||||
# 1.0 in head_mask indicate we keep the head
|
||||
# attention_probs has shape bsz x n_heads x N x N
|
||||
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
||||
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
||||
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
||||
hidden_states = hidden_states if hidden_states is not None else None
|
||||
|
||||
if stage_manager.is_first_stage():
|
||||
hidden_states = self.embeddings(
|
||||
input_ids=input_ids,
|
||||
position_ids=position_ids,
|
||||
token_type_ids=token_type_ids,
|
||||
inputs_embeds=inputs_embeds,
|
||||
past_key_values_length=past_key_values_length,
|
||||
)
|
||||
|
||||
# inherit from bert_layer,this should be changed when we add the feature to record hidden_states
|
||||
all_hidden_states = () if output_hidden_states else None
|
||||
all_self_attentions = () if output_attentions else None
|
||||
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
|
||||
|
@ -221,34 +227,35 @@ def bert_model_forward(
|
|||
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
|
||||
if not return_dict:
|
||||
return (sequence_output, pooled_output) + layer_outputs[1:]
|
||||
# return dict is not supported at this moment
|
||||
else:
|
||||
return BaseModelOutputWithPastAndCrossAttentions(
|
||||
last_hidden_state=hidden_states,
|
||||
past_key_values=next_decoder_cache,
|
||||
hidden_states=all_hidden_states,
|
||||
attentions=all_self_attentions,
|
||||
cross_attentions=all_cross_attentions,
|
||||
)
|
||||
|
||||
# output of non-first and non-last stages:
|
||||
if not return_dict:
|
||||
return tuple(v for v in [
|
||||
hidden_states,
|
||||
next_decoder_cache,
|
||||
all_hidden_states,
|
||||
all_self_attentions,
|
||||
all_cross_attentions,
|
||||
] if v is not None)
|
||||
|
||||
# return dict is not supported at this moment
|
||||
return BaseModelOutputWithPastAndCrossAttentions(
|
||||
last_hidden_state=hidden_states,
|
||||
past_key_values=next_decoder_cache,
|
||||
hidden_states=all_hidden_states,
|
||||
attentions=all_self_attentions,
|
||||
cross_attentions=all_cross_attentions,
|
||||
)
|
||||
# output of non-first and non-last stages: must be a dict
|
||||
else:
|
||||
# intermediate stage always return dict
|
||||
return {
|
||||
'hidden_states': hidden_states,
|
||||
}
|
||||
|
||||
|
||||
# The layer partition policy for bertmodel
|
||||
class BertModelPolicy(Policy):
|
||||
|
||||
def __init__(self, stage_manager: PipelineStageManager, num_layers: int, num_stages: int):
|
||||
def __init__(
|
||||
self,
|
||||
stage_manager: PipelineStageManager,
|
||||
num_layers: int,
|
||||
):
|
||||
super().__init__(stage_manager=stage_manager)
|
||||
self.stage_manager = stage_manager
|
||||
self.layers_per_stage = self.distribute_layers(num_layers, num_stages)
|
||||
self.layers_per_stage = self.distribute_layers(num_layers, stage_manager.num_stages)
|
||||
|
||||
def get_hold_layers(self, module: BertModel) -> List[Module]:
|
||||
"""
|
||||
|
@ -266,10 +273,10 @@ class BertModelPolicy(Policy):
|
|||
|
||||
def get_shared_params(self, module: BertModel) -> List[Dict[int, Tensor]]:
|
||||
'''no shared params in bertmodel'''
|
||||
pass
|
||||
return []
|
||||
|
||||
def replace_forward(self, module: Module) -> None:
|
||||
module.model.forward = MethodType(partial(bert_model_forward, stage_manager=self.stage_manager), module.model)
|
||||
module.forward = MethodType(partial(bert_model_forward, stage_manager=self.stage_manager), module)
|
||||
|
||||
|
||||
def bert_for_pretraining_forward(
|
||||
|
@ -285,53 +292,74 @@ def bert_for_pretraining_forward(
|
|||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
hidden_states: Optional[torch.LongTensor] = None,
|
||||
hidden_states: Optional[torch.FloatTensor] = None,
|
||||
stage_manager: Optional[PipelineStageManager] = None,
|
||||
) -> Union[Tuple[torch.Tensor], BertForPreTrainingOutput]:
|
||||
|
||||
):
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
outputs = bert_model_forward(
|
||||
self.bert,
|
||||
input_ids,
|
||||
attention_mask=attention_mask,
|
||||
token_type_ids=token_type_ids,
|
||||
position_ids=position_ids,
|
||||
head_mask=head_mask,
|
||||
inputs_embeds=inputs_embeds,
|
||||
output_attentions=output_attentions,
|
||||
output_hidden_states=output_hidden_states,
|
||||
return_dict=return_dict,
|
||||
)
|
||||
# TODO: left the recording kv-value tensors as () or None type, this feature may be added in the future.
|
||||
if output_attentions:
|
||||
logger.warning_once('output_attentions=True is not supported for pipeline models at the moment.')
|
||||
output_attentions = False
|
||||
if output_hidden_states:
|
||||
logger.warning_once('output_hidden_states=True is not supported for pipeline models at the moment.')
|
||||
output_hidden_states = False
|
||||
if return_dict:
|
||||
logger.warning_once('return_dict is not supported for pipeline models at the moment')
|
||||
return_dict = False
|
||||
|
||||
sequence_output, pooled_output = outputs[:2]
|
||||
outputs = bert_model_forward(self.bert,
|
||||
input_ids,
|
||||
attention_mask=attention_mask,
|
||||
token_type_ids=token_type_ids,
|
||||
position_ids=position_ids,
|
||||
head_mask=head_mask,
|
||||
inputs_embeds=inputs_embeds,
|
||||
output_attentions=output_attentions,
|
||||
output_hidden_states=output_hidden_states,
|
||||
return_dict=return_dict,
|
||||
stage_manager=stage_manager,
|
||||
hidden_states=hidden_states if hidden_states is not None else None)
|
||||
past_key_values = None
|
||||
all_hidden_states = None
|
||||
all_self_attentions = None
|
||||
all_cross_attentions = None
|
||||
if stage_manager.is_last_stage():
|
||||
sequence_output, pooled_output = outputs[:2]
|
||||
prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output)
|
||||
# the last stage for pretraining model
|
||||
total_loss = None
|
||||
if labels is not None and next_sentence_label is not None:
|
||||
loss_fct = CrossEntropyLoss()
|
||||
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
|
||||
next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1))
|
||||
total_loss = masked_lm_loss + next_sentence_loss
|
||||
|
||||
total_loss = None
|
||||
if labels is not None and next_sentence_label is not None:
|
||||
loss_fct = CrossEntropyLoss()
|
||||
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
|
||||
next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1))
|
||||
total_loss = masked_lm_loss + next_sentence_loss
|
||||
if not return_dict:
|
||||
output = (prediction_scores, seq_relationship_score) + outputs[2:]
|
||||
return ((total_loss,) + output) if total_loss is not None else output
|
||||
|
||||
if not return_dict:
|
||||
output = (prediction_scores, seq_relationship_score) + outputs[2:]
|
||||
return ((total_loss,) + output) if total_loss is not None else output
|
||||
return BertForPreTrainingOutput(
|
||||
loss=total_loss,
|
||||
prediction_logits=prediction_scores,
|
||||
seq_relationship_logits=seq_relationship_score,
|
||||
hidden_states=outputs.hidden_states,
|
||||
attentions=outputs.attentions,
|
||||
)
|
||||
else:
|
||||
hidden_states = outputs.get('hidden_states')
|
||||
|
||||
return BertForPreTrainingOutput(
|
||||
loss=total_loss,
|
||||
prediction_logits=prediction_scores,
|
||||
seq_relationship_logits=seq_relationship_score,
|
||||
hidden_states=outputs.hidden_states,
|
||||
attentions=outputs.attentions,
|
||||
)
|
||||
# intermediate stage always return dict
|
||||
return {
|
||||
'hidden_states': hidden_states,
|
||||
}
|
||||
|
||||
|
||||
class BertForPreTrainingPolicy(Policy):
|
||||
|
||||
def __init__(self, stage_manager: PipelineStageManager, num_layers: int, num_stages: int):
|
||||
def __init__(self, stage_manager: PipelineStageManager, num_layers: int):
|
||||
super().__init__(stage_manager=stage_manager)
|
||||
self.stage_manager = stage_manager
|
||||
self.layers_per_stage = self.distribute_layers(num_layers, num_stages)
|
||||
self.layers_per_stage = self.distribute_layers(num_layers, stage_manager.num_stages)
|
||||
|
||||
def get_hold_layers(self, module: BertForPreTraining) -> List[Module]:
|
||||
"""
|
||||
|
@ -352,25 +380,144 @@ class BertForPreTrainingPolicy(Policy):
|
|||
|
||||
def get_shared_params(self, module: BertForPreTraining) -> List[Dict[int, Tensor]]:
|
||||
'''no shared params in bertmodel'''
|
||||
pass
|
||||
return []
|
||||
|
||||
def replace_forward(self, module: Module) -> None:
|
||||
module.model.forward = MethodType(partial(bert_for_pretraining_forward, stage_manager=self.stage_manager),
|
||||
module.model)
|
||||
module.forward = MethodType(partial(bert_for_pretraining_forward, stage_manager=self.stage_manager),
|
||||
module.forward)
|
||||
|
||||
def distribute_layers(self, num_layers: int, num_stages: int) -> List[int]:
|
||||
|
||||
def bert_lmhead_forward(self: BertLMHeadModel,
|
||||
input_ids: Optional[torch.Tensor] = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
token_type_ids: Optional[torch.Tensor] = None,
|
||||
position_ids: Optional[torch.Tensor] = None,
|
||||
head_mask: Optional[torch.Tensor] = None,
|
||||
inputs_embeds: Optional[torch.Tensor] = None,
|
||||
encoder_hidden_states: Optional[torch.Tensor] = None,
|
||||
encoder_attention_mask: Optional[torch.Tensor] = None,
|
||||
labels: Optional[torch.Tensor] = None,
|
||||
past_key_values: Optional[List[torch.Tensor]] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
hidden_states: Optional[torch.FloatTensor] = None,
|
||||
stage_manager: Optional[PipelineStageManager] = None):
|
||||
r"""
|
||||
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
||||
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
||||
the model is configured as a decoder.
|
||||
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||||
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
||||
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
|
||||
|
||||
- 1 for tokens that are **not masked**,
|
||||
- 0 for tokens that are **masked**.
|
||||
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||||
Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
|
||||
`[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are
|
||||
ignored (masked), the loss is only computed for the tokens with labels n `[0, ..., config.vocab_size]`
|
||||
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
||||
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
||||
|
||||
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
||||
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
||||
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
||||
use_cache (`bool`, *optional*):
|
||||
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
||||
`past_key_values`).
|
||||
"""
|
||||
divide layers into stages
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
|
||||
if labels is not None:
|
||||
use_cache = False
|
||||
if output_attentions:
|
||||
logger.warning_once('output_attentions=True is not supported for pipeline models at the moment.')
|
||||
output_attentions = False
|
||||
if output_hidden_states:
|
||||
logger.warning_once('output_hidden_states=True is not supported for pipeline models at the moment.')
|
||||
output_hidden_states = False
|
||||
if return_dict:
|
||||
logger.warning_once('return_dict is not supported for pipeline models at the moment')
|
||||
return_dict = False
|
||||
|
||||
outputs = bert_model_forward(self.bert,
|
||||
input_ids,
|
||||
attention_mask=attention_mask,
|
||||
token_type_ids=token_type_ids,
|
||||
position_ids=position_ids,
|
||||
head_mask=head_mask,
|
||||
inputs_embeds=inputs_embeds,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
past_key_values=past_key_values,
|
||||
use_cache=use_cache,
|
||||
output_attentions=output_attentions,
|
||||
output_hidden_states=output_hidden_states,
|
||||
return_dict=return_dict,
|
||||
stage_manager=stage_manager,
|
||||
hidden_states=hidden_states if hidden_states is not None else None)
|
||||
past_key_values = None
|
||||
all_hidden_states = None
|
||||
all_self_attentions = None
|
||||
all_cross_attentions = None
|
||||
|
||||
if stage_manager.is_last_stage():
|
||||
sequence_output = outputs[0]
|
||||
prediction_scores = self.cls(sequence_output)
|
||||
|
||||
lm_loss = None
|
||||
if labels is not None:
|
||||
# we are doing next-token prediction; shift prediction scores and input ids by one
|
||||
shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous()
|
||||
labels = labels[:, 1:].contiguous()
|
||||
loss_fct = CrossEntropyLoss()
|
||||
lm_loss = loss_fct(shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
|
||||
|
||||
if not return_dict:
|
||||
output = (prediction_scores,) + outputs[2:]
|
||||
return ((lm_loss,) + output) if lm_loss is not None else output
|
||||
|
||||
return CausalLMOutputWithCrossAttentions(
|
||||
loss=lm_loss,
|
||||
logits=prediction_scores,
|
||||
past_key_values=outputs.past_key_values,
|
||||
hidden_states=outputs.hidden_states,
|
||||
attentions=outputs.attentions,
|
||||
cross_attentions=outputs.cross_attentions,
|
||||
)
|
||||
else:
|
||||
hidden_states = outputs.get('hidden_states')
|
||||
# intermediate stage always return dict
|
||||
return {'hidden_states': hidden_states}
|
||||
|
||||
|
||||
class BertLMHeadModelPolicy(Policy):
|
||||
|
||||
def __init__(self, stage_manager: PipelineStageManager, num_layers: int):
|
||||
super().__init__(stage_manager=stage_manager)
|
||||
self.stage_manager = stage_manager
|
||||
self.layers_per_stage = self.distribute_layers(num_layers, stage_manager.num_stages)
|
||||
|
||||
def get_hold_layers(self, module: BertLMHeadModel) -> List[Module]:
|
||||
"""
|
||||
quotient = num_layers // num_stages
|
||||
remainder = num_layers % num_stages
|
||||
get pipeline layers for current stage
|
||||
"""
|
||||
hold_layers = []
|
||||
if self.stage_manager.is_first_stage():
|
||||
hold_layers.append(module.bert.embeddings)
|
||||
start_idx, end_idx = self.get_stage_index(self.layers_per_stage, self.stage_manager.stage)
|
||||
hold_layers.extend(module.bert.encoder.layer[start_idx:end_idx])
|
||||
if self.stage_manager.is_last_stage():
|
||||
hold_layers.append(module.bert.pooler)
|
||||
hold_layers.append(module.cls)
|
||||
|
||||
# calculate the num_layers per stage
|
||||
layers_per_stage = [quotient] * num_stages
|
||||
return hold_layers
|
||||
|
||||
# deal with the rest layers
|
||||
if remainder > 0:
|
||||
start_position = num_layers // 2 - remainder // 2
|
||||
for i in range(start_position, start_position + remainder):
|
||||
layers_per_stage[i] += 1
|
||||
return layers_per_stage
|
||||
def get_shared_params(self, module: BertLMHeadModel) -> List[Dict[int, Tensor]]:
|
||||
'''no shared params in bertmodel'''
|
||||
return []
|
||||
|
||||
def replace_forward(self, module: Module) -> None:
|
||||
module.forward = MethodType(partial(bert_lmhead_forward, stage_manager=self.stage_manager), module)
|
||||
|
|
|
@ -0,0 +1,118 @@
|
|||
import pytest
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
from transformers.models.bert import BertConfig
|
||||
from transformers.models.bert.modeling_bert import BertForPreTraining
|
||||
|
||||
import colossalai
|
||||
from colossalai.cluster import ProcessGroupMesh
|
||||
from colossalai.pipeline.policy.bert import BertForPreTrainingPolicy, bert_for_pretraining_forward
|
||||
from colossalai.pipeline.stage_manager import PipelineStageManager
|
||||
from colossalai.testing import rerun_if_address_is_in_use, spawn
|
||||
|
||||
|
||||
def check_bert_for_pretraining_forward():
|
||||
configuration = BertConfig()
|
||||
model = BertForPreTraining(configuration)
|
||||
DP_DIM, PP_DIM = 0, 1
|
||||
DP_SIZE, PP_SIZE = 2, 2
|
||||
RANK_TO_COORDINATE = {
|
||||
0: (0, 0),
|
||||
1: (0, 1),
|
||||
2: (1, 0),
|
||||
3: (1, 1),
|
||||
}
|
||||
PP_RANKS_IN_GROUP = {
|
||||
0: [0, 1],
|
||||
1: [0, 1],
|
||||
2: [2, 3],
|
||||
3: [2, 3],
|
||||
}
|
||||
pg_mesh = ProcessGroupMesh(DP_SIZE, PP_SIZE)
|
||||
# print(pg_mesh)
|
||||
|
||||
stage_manager = PipelineStageManager(pg_mesh, PP_DIM)
|
||||
rank = dist.get_rank()
|
||||
# print(rank)
|
||||
|
||||
x = torch.randint(0, 1000, (2, 3))
|
||||
hidden_states = torch.randint(0, 1000, (2, 3, 768)).to(torch.float32)
|
||||
if stage_manager.stage == 0:
|
||||
attention_mask = torch.ones_like(x)
|
||||
output = bert_for_pretraining_forward(self=model,
|
||||
input_ids=x,
|
||||
attention_mask=attention_mask,
|
||||
stage_manager=stage_manager)
|
||||
print(output['hidden_states'].shape)
|
||||
assert output['hidden_states'].shape == (2, 3, 768)
|
||||
print('start the training')
|
||||
else:
|
||||
attention_mask = torch.ones((2, 3))
|
||||
output = bert_for_pretraining_forward(self=model,
|
||||
hidden_states=hidden_states,
|
||||
attention_mask=attention_mask,
|
||||
stage_manager=stage_manager)
|
||||
print(output[0].shape)
|
||||
assert output[0].shape == (2, 3, 30522)
|
||||
print('end the training')
|
||||
print(output)
|
||||
|
||||
# assert output[1].shape == (2, 768)
|
||||
|
||||
|
||||
def check_bert_for_pretraining_policy():
|
||||
configuration = BertConfig()
|
||||
model = BertForPreTraining(configuration)
|
||||
DP_DIM, PP_DIM = 0, 1
|
||||
DP_SIZE, PP_SIZE = 2, 2
|
||||
RANK_TO_COORDINATE = {
|
||||
0: (0, 0),
|
||||
1: (0, 1),
|
||||
2: (1, 0),
|
||||
3: (1, 1),
|
||||
}
|
||||
PP_RANKS_IN_GROUP = {
|
||||
0: [0, 1],
|
||||
1: [0, 1],
|
||||
2: [2, 3],
|
||||
3: [2, 3],
|
||||
}
|
||||
pg_mesh = ProcessGroupMesh(DP_SIZE, PP_SIZE)
|
||||
# print(pg_mesh)
|
||||
|
||||
stage_manager = PipelineStageManager(pg_mesh, PP_DIM)
|
||||
rank = dist.get_rank()
|
||||
|
||||
model_policy = BertForPreTrainingPolicy(stage_manager, len(model.bert.encoder.layer))
|
||||
assert model_policy.layers_per_stage == [6, 6]
|
||||
layers = model_policy.get_hold_layers(model)
|
||||
for layer in layers:
|
||||
print(layer)
|
||||
|
||||
|
||||
def run_dist_model(rank, world_size, port):
|
||||
colossalai.launch(config={}, rank=rank, world_size=world_size, port=port, host='localhost')
|
||||
check_bert_for_pretraining_forward()
|
||||
|
||||
|
||||
def run_dist_policy(rank, world_size, port):
|
||||
colossalai.launch(config={}, rank=rank, world_size=world_size, port=port, host='localhost')
|
||||
check_bert_for_pretraining_policy()
|
||||
|
||||
|
||||
@pytest.mark.dist
|
||||
@rerun_if_address_is_in_use()
|
||||
def test_bert_for_pretraining_forward():
|
||||
spawn(run_dist_model, 4)
|
||||
|
||||
|
||||
@pytest.mark.dist
|
||||
@rerun_if_address_is_in_use()
|
||||
def test_bert_for_pretraining_policy():
|
||||
spawn(run_dist_policy, 4)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
"""test the bert for pretraining model forward and bert for pretraining model policy"""
|
||||
test_bert_for_pretraining_forward()
|
||||
test_bert_for_pretraining_policy()
|
|
@ -0,0 +1,118 @@
|
|||
import pytest
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
from transformers.models.bert import BertConfig
|
||||
from transformers.models.bert.modeling_bert import BertLMHeadModel
|
||||
|
||||
import colossalai
|
||||
from colossalai.cluster import ProcessGroupMesh
|
||||
from colossalai.pipeline.policy.bert import BertLMHeadModelPolicy, bert_lmhead_forward
|
||||
from colossalai.pipeline.stage_manager import PipelineStageManager
|
||||
from colossalai.testing import rerun_if_address_is_in_use, spawn
|
||||
|
||||
|
||||
def check_bert_lmhead_forward():
|
||||
configuration = BertConfig()
|
||||
model = BertLMHeadModel(configuration)
|
||||
DP_DIM, PP_DIM = 0, 1
|
||||
DP_SIZE, PP_SIZE = 2, 2
|
||||
RANK_TO_COORDINATE = {
|
||||
0: (0, 0),
|
||||
1: (0, 1),
|
||||
2: (1, 0),
|
||||
3: (1, 1),
|
||||
}
|
||||
PP_RANKS_IN_GROUP = {
|
||||
0: [0, 1],
|
||||
1: [0, 1],
|
||||
2: [2, 3],
|
||||
3: [2, 3],
|
||||
}
|
||||
pg_mesh = ProcessGroupMesh(DP_SIZE, PP_SIZE)
|
||||
# print(pg_mesh)
|
||||
|
||||
stage_manager = PipelineStageManager(pg_mesh, PP_DIM)
|
||||
rank = dist.get_rank()
|
||||
# print(rank)
|
||||
|
||||
x = torch.randint(0, 1000, (2, 3))
|
||||
hidden_states = torch.randint(0, 1000, (2, 3, 768)).to(torch.float32)
|
||||
if stage_manager.stage == 0:
|
||||
attention_mask = torch.ones_like(x)
|
||||
output = bert_lmhead_forward(self=model,
|
||||
input_ids=x,
|
||||
attention_mask=attention_mask,
|
||||
stage_manager=stage_manager)
|
||||
print(output['hidden_states'].shape)
|
||||
assert output['hidden_states'].shape == (2, 3, 768)
|
||||
print('start the training')
|
||||
else:
|
||||
attention_mask = torch.ones((2, 3))
|
||||
output = bert_lmhead_forward(self=model,
|
||||
hidden_states=hidden_states,
|
||||
attention_mask=attention_mask,
|
||||
stage_manager=stage_manager)
|
||||
print(output[0].shape)
|
||||
assert output[0].shape == (2, 3, 30522)
|
||||
print('end the training')
|
||||
print(output)
|
||||
|
||||
# assert output[1].shape == (2, 768)
|
||||
|
||||
|
||||
def check_bert_lmhead_policy():
|
||||
configuration = BertConfig()
|
||||
model = BertLMHeadModel(configuration)
|
||||
DP_DIM, PP_DIM = 0, 1
|
||||
DP_SIZE, PP_SIZE = 2, 2
|
||||
RANK_TO_COORDINATE = {
|
||||
0: (0, 0),
|
||||
1: (0, 1),
|
||||
2: (1, 0),
|
||||
3: (1, 1),
|
||||
}
|
||||
PP_RANKS_IN_GROUP = {
|
||||
0: [0, 1],
|
||||
1: [0, 1],
|
||||
2: [2, 3],
|
||||
3: [2, 3],
|
||||
}
|
||||
pg_mesh = ProcessGroupMesh(DP_SIZE, PP_SIZE)
|
||||
# print(pg_mesh)
|
||||
|
||||
stage_manager = PipelineStageManager(pg_mesh, PP_DIM)
|
||||
rank = dist.get_rank()
|
||||
|
||||
model_policy = BertLMHeadModelPolicy(stage_manager, len(model.bert.encoder.layer))
|
||||
assert model_policy.layers_per_stage == [6, 6]
|
||||
layers = model_policy.get_hold_layers(model)
|
||||
for layer in layers:
|
||||
print(layer)
|
||||
|
||||
|
||||
def run_dist_model(rank, world_size, port):
|
||||
colossalai.launch(config={}, rank=rank, world_size=world_size, port=port, host='localhost')
|
||||
check_bert_lmhead_forward()
|
||||
|
||||
|
||||
def run_dist_policy(rank, world_size, port):
|
||||
colossalai.launch(config={}, rank=rank, world_size=world_size, port=port, host='localhost')
|
||||
check_bert_lmhead_policy()
|
||||
|
||||
|
||||
@pytest.mark.dist
|
||||
@rerun_if_address_is_in_use()
|
||||
def test_bert_lmhead_forward():
|
||||
spawn(run_dist_model, 4)
|
||||
|
||||
|
||||
@pytest.mark.dist
|
||||
@rerun_if_address_is_in_use()
|
||||
def test_bert_lmhead_policy():
|
||||
spawn(run_dist_policy, 4)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
"""test the bert for pretraining model forward and bert for pretraining model policy"""
|
||||
test_bert_lmhead_forward()
|
||||
test_bert_lmhead_policy()
|
|
@ -39,11 +39,11 @@ def check_bert_model_forward():
|
|||
if stage_manager.stage == 0:
|
||||
attention_mask = torch.ones_like(x)
|
||||
output = bert_model_forward(self=model, input_ids=x, attention_mask=attention_mask, stage_manager=stage_manager)
|
||||
print(output[0].shape)
|
||||
assert output[0].shape == (2, 3, 768)
|
||||
print(output['hidden_states'].shape)
|
||||
assert output['hidden_states'].shape == (2, 3, 768)
|
||||
print('start the training')
|
||||
else:
|
||||
attention_mask = torch.ones((2, 12, 3, 3))
|
||||
attention_mask = torch.ones((2, 3))
|
||||
output = bert_model_forward(self=model,
|
||||
hidden_states=hidden_states,
|
||||
attention_mask=attention_mask,
|
||||
|
@ -78,7 +78,7 @@ def check_bert_model_policy():
|
|||
stage_manager = PipelineStageManager(pg_mesh, PP_DIM)
|
||||
rank = dist.get_rank()
|
||||
|
||||
model_policy = BertModelPolicy(stage_manager, len(model.encoder.layer), 2)
|
||||
model_policy = BertModelPolicy(stage_manager, len(model.encoder.layer))
|
||||
assert model_policy.layers_per_stage == [6, 6]
|
||||
layers = model_policy.get_hold_layers(model)
|
||||
for layer in layers:
|
||||
|
|
Loading…
Reference in New Issue