mirror of https://github.com/hpcaitech/ColossalAI
Browse Source
* [example] pass use_fp8_comm flag to all plugins * [example] add mixtral benchmark * [moe] refine assertion and check * [moe] fix mixtral & add more tests * [moe] consider checking dp * sp group and moe_dp_group * [mixtral] remove gate tp & add more tests * [deepseek] fix tp & sp for deepseek * [mixtral] minor fix * [deepseek] add deepseek benchmarkpull/6057/head
botbw
2 months ago
committed by
GitHub
21 changed files with 907 additions and 99 deletions
@ -0,0 +1,271 @@ |
|||||||
|
# modified from mixtral benchmark |
||||||
|
import argparse |
||||||
|
import resource |
||||||
|
import time |
||||||
|
import warnings |
||||||
|
from contextlib import nullcontext |
||||||
|
|
||||||
|
import torch |
||||||
|
import torch.distributed as dist |
||||||
|
from data_utils import RandomDataset |
||||||
|
from model_utils import format_numel_str, get_model_numel |
||||||
|
from performance_evaluator import PerformanceEvaluator, get_profile_context |
||||||
|
from tqdm import tqdm |
||||||
|
from transformers import AutoConfig, AutoModelForCausalLM |
||||||
|
|
||||||
|
import colossalai |
||||||
|
from colossalai.accelerator import get_accelerator |
||||||
|
from colossalai.booster import Booster |
||||||
|
from colossalai.booster.plugin import MoeHybridParallelPlugin |
||||||
|
from colossalai.cluster import DistCoordinator |
||||||
|
from colossalai.lazy import LazyInitContext |
||||||
|
from colossalai.nn.optimizer import HybridAdam |
||||||
|
from colossalai.shardformer import PipelineGradientCheckpointConfig |
||||||
|
|
||||||
|
warnings.filterwarnings("ignore") |
||||||
|
# ============================== |
||||||
|
# Constants |
||||||
|
# ============================== |
||||||
|
|
||||||
|
# We have lots of llamas for your choice! |
||||||
|
MODEL_CONFIGS = { |
||||||
|
"100m": lambda: AutoConfig.from_pretrained( |
||||||
|
"deepseek-ai/deepseek-moe-16b-base", |
||||||
|
max_position_embeddings=4096, |
||||||
|
num_hidden_layers=1, |
||||||
|
num_attention_heads=32, |
||||||
|
intermediate_size=512, |
||||||
|
moe_intermediate_size=128, |
||||||
|
hidden_size=512, |
||||||
|
n_routed_experts=8, |
||||||
|
n_shared_experts=4, |
||||||
|
num_experts_per_tok=2, |
||||||
|
first_k_dense_replace=0, |
||||||
|
attn_implementation="flash_attention_2", |
||||||
|
trust_remote_code=True, |
||||||
|
), |
||||||
|
"7b": lambda: AutoConfig.from_pretrained( |
||||||
|
"deepseek-ai/deepseek-moe-16b-base", |
||||||
|
max_position_embeddings=4096, |
||||||
|
num_hidden_layers=13, |
||||||
|
attn_implementation="flash_attention_2", |
||||||
|
trust_remote_code=True, |
||||||
|
), |
||||||
|
"14b": lambda: AutoConfig.from_pretrained( |
||||||
|
"deepseek-ai/deepseek-moe-16b-base", |
||||||
|
max_position_embeddings=4096, |
||||||
|
num_hidden_layers=26, |
||||||
|
attn_implementation="flash_attention_2", |
||||||
|
trust_remote_code=True, |
||||||
|
), |
||||||
|
} |
||||||
|
|
||||||
|
|
||||||
|
def main(): |
||||||
|
# ============================== |
||||||
|
# Parse Arguments |
||||||
|
# ============================== |
||||||
|
parser = argparse.ArgumentParser() |
||||||
|
parser.add_argument("-c", "--config", type=str, default="100m", help="Model configuration") |
||||||
|
parser.add_argument( |
||||||
|
"-p", |
||||||
|
"--plugin", |
||||||
|
choices=["3d"], |
||||||
|
default="3d", |
||||||
|
help="Choose which plugin to use", |
||||||
|
) |
||||||
|
parser.add_argument("-b", "--batch_size", type=int, default=1, help="Batch size") |
||||||
|
parser.add_argument("-s", "--num_steps", type=int, default=5, help="Number of steps to run") |
||||||
|
parser.add_argument("-i", "--ignore_steps", type=int, default=2, help="Number of steps to ignore") |
||||||
|
parser.add_argument("-g", "--grad_checkpoint", action="store_true", help="Use gradient checkpointing") |
||||||
|
parser.add_argument("-l", "--max_length", type=int, default=4096, help="Max sequence length") |
||||||
|
parser.add_argument( |
||||||
|
"-w", "--warmup_ratio", type=float, default=0.8, help="warm up ratio of non-model data. Only for gemini-auto" |
||||||
|
) |
||||||
|
parser.add_argument("-m", "--memory_limit", type=int, help="Gemini memory limit in mb") |
||||||
|
parser.add_argument("-x", "--xformers", action="store_true", help="Use xformers") |
||||||
|
parser.add_argument("--shard_param_frac", type=float, default=1.0, help="Shard param fraction. Only for gemini") |
||||||
|
parser.add_argument("--offload_optim_frac", type=float, default=0.0, help="Offload optim fraction. Only for gemini") |
||||||
|
parser.add_argument("--offload_param_frac", type=float, default=0.0, help="Offload param fraction. Only for gemini") |
||||||
|
parser.add_argument("--tp", type=int, default=1, help="Tensor parallel size") |
||||||
|
parser.add_argument("--ep", type=int, default=1, help="Expert parallel size") |
||||||
|
parser.add_argument("--sp", type=int, default=1, help="Sequence parallel size") |
||||||
|
parser.add_argument("--extra_dp", type=int, default=1, help="Extra data parallel size, used for Gemini") |
||||||
|
parser.add_argument("--pp", type=int, default=1, help="Pipeline parallel size") |
||||||
|
parser.add_argument("--mbs", type=int, default=1, help="Micro batch size of pipeline parallel") |
||||||
|
parser.add_argument("--zero", type=int, default=1, help="Zero Stage when hybrid plugin is enabled") |
||||||
|
parser.add_argument("--custom-ckpt", action="store_true", help="Customize checkpoint", default=False) |
||||||
|
|
||||||
|
parser.add_argument("--pp_style", default="1f1b", choices=["1f1b", "interleaved"]) |
||||||
|
parser.add_argument("--n_chunks", default=1, help="number of model chunks", type=eval) |
||||||
|
parser.add_argument("--profile", action="store_true", help="Profile the code") |
||||||
|
parser.add_argument( |
||||||
|
"--nsys", |
||||||
|
action="store_true", |
||||||
|
help="Use nsys for profiling. \ |
||||||
|
You should put something like this before colossalai launch: \ |
||||||
|
nsys profile -w true -t cuda,cudnn,cublas -s cpu --capture-range=cudaProfilerApi --capture-range-end=stop --cudabacktrace=true -x true --python-backtrace=cuda -o prof_out", |
||||||
|
) |
||||||
|
parser.add_argument("--disable-async-reduce", action="store_true", help="Disable the asynchronous reduce operation") |
||||||
|
parser.add_argument("--prefetch_num", type=int, default=0, help="chunk prefetch max number") |
||||||
|
parser.add_argument("--no_cache", action="store_true") |
||||||
|
parser.add_argument("--use_fp8_comm", action="store_true", default=False, help="for using fp8 during communication") |
||||||
|
parser.add_argument("--use_fp8", action="store_true", default=False, help="for using fp8 linear") |
||||||
|
parser.add_argument("--overlap_allgather", action="store_true") |
||||||
|
parser.add_argument( |
||||||
|
"--sp_mode", |
||||||
|
default="all_to_all", |
||||||
|
choices=["all_to_all"], |
||||||
|
help="Sequence parallelism mode", |
||||||
|
) |
||||||
|
parser.add_argument("--debug", action="store_true", help="Enable debug mode") |
||||||
|
args = parser.parse_args() |
||||||
|
|
||||||
|
colossalai.launch_from_torch() |
||||||
|
coordinator = DistCoordinator() |
||||||
|
|
||||||
|
# ckpt config for LLaMA3-70B on 64 H100 GPUs |
||||||
|
hybrid_kwargs = ( |
||||||
|
{ |
||||||
|
"gradient_checkpoint_config": PipelineGradientCheckpointConfig( |
||||||
|
num_ckpt_layers_per_stage=[19, 19, 19, 13], |
||||||
|
), |
||||||
|
"num_layers_per_stage": [19, 20, 20, 21], |
||||||
|
"pp_style": "interleaved", |
||||||
|
} |
||||||
|
if args.custom_ckpt |
||||||
|
else {} |
||||||
|
) |
||||||
|
|
||||||
|
# ============================== |
||||||
|
# Initialize Booster |
||||||
|
# ============================== |
||||||
|
if args.plugin == "3d": |
||||||
|
plugin = MoeHybridParallelPlugin( |
||||||
|
ep_size=args.ep, |
||||||
|
tp_size=args.tp, |
||||||
|
pp_size=args.pp, |
||||||
|
pp_style=args.pp_style, |
||||||
|
num_model_chunks=args.n_chunks, |
||||||
|
zero_stage=args.zero, |
||||||
|
sp_size=args.sp, |
||||||
|
sequence_parallelism_mode=args.sp_mode, |
||||||
|
enable_sequence_parallelism=args.sp > 1, |
||||||
|
enable_fused_normalization=torch.cuda.is_available(), |
||||||
|
enable_flash_attention=args.xformers, |
||||||
|
microbatch_size=args.mbs, |
||||||
|
precision="bf16", |
||||||
|
enable_metadata_cache=not args.no_cache, |
||||||
|
overlap_allgather=args.overlap_allgather, |
||||||
|
use_fp8=args.use_fp8, |
||||||
|
fp8_communication=args.use_fp8_comm, |
||||||
|
**hybrid_kwargs, |
||||||
|
) |
||||||
|
else: |
||||||
|
raise ValueError(f"Unknown plugin {args.plugin}") |
||||||
|
|
||||||
|
booster = Booster(plugin=plugin) |
||||||
|
|
||||||
|
# ============================== |
||||||
|
# Initialize Dataset and Dataloader |
||||||
|
# ============================== |
||||||
|
dp_size = getattr(plugin, "dp_size", coordinator.world_size) |
||||||
|
|
||||||
|
config = MODEL_CONFIGS[args.config]() |
||||||
|
|
||||||
|
torch.cuda.manual_seed(42) |
||||||
|
|
||||||
|
dataset = RandomDataset( |
||||||
|
num_samples=args.batch_size * args.num_steps * dp_size, max_length=args.max_length, vocab_size=config.vocab_size |
||||||
|
) |
||||||
|
dataloader = plugin.prepare_dataloader(dataset, batch_size=args.batch_size, shuffle=True, drop_last=True, seed=42) |
||||||
|
|
||||||
|
# ============================== |
||||||
|
# Initialize Model and Optimizer |
||||||
|
# ============================== |
||||||
|
init_ctx = ( |
||||||
|
LazyInitContext(default_device=get_accelerator().get_current_device()) |
||||||
|
if isinstance(plugin, MoeHybridParallelPlugin) |
||||||
|
else nullcontext() |
||||||
|
) |
||||||
|
|
||||||
|
with init_ctx: |
||||||
|
model = AutoModelForCausalLM.from_config(config, trust_remote_code=True).to(torch.bfloat16) |
||||||
|
|
||||||
|
if args.grad_checkpoint: |
||||||
|
model.gradient_checkpointing_enable() |
||||||
|
|
||||||
|
model_numel = get_model_numel(model) |
||||||
|
coordinator.print_on_master(f"Model params: {format_numel_str(model_numel)}") |
||||||
|
performance_evaluator = PerformanceEvaluator( |
||||||
|
model_numel, |
||||||
|
model.config.num_hidden_layers, |
||||||
|
model.config.hidden_size, |
||||||
|
model.config.vocab_size, |
||||||
|
args.grad_checkpoint, |
||||||
|
args.ignore_steps, |
||||||
|
dp_world_size=dp_size, |
||||||
|
) |
||||||
|
|
||||||
|
optimizer = HybridAdam(model.parameters()) |
||||||
|
torch.set_default_dtype(torch.bfloat16) |
||||||
|
model, optimizer, _, dataloader, _ = booster.boost(model, optimizer, dataloader=dataloader) |
||||||
|
|
||||||
|
torch.set_default_dtype(torch.float) |
||||||
|
coordinator.print_on_master( |
||||||
|
f"Booster init max CUDA memory: {get_accelerator().max_memory_allocated()/1024**2:.2f} MB" |
||||||
|
) |
||||||
|
coordinator.print_on_master( |
||||||
|
f"Booster init max CPU memory: {resource.getrusage(resource.RUSAGE_SELF).ru_maxrss/1024:.2f} MB" |
||||||
|
) |
||||||
|
|
||||||
|
with get_profile_context( |
||||||
|
args.profile, |
||||||
|
args.ignore_steps, |
||||||
|
1, # avoid creating massive log files |
||||||
|
save_dir=f"profile/{time.strftime('%H:%M', time.localtime())}-{args.plugin}-llama-{args.config}", |
||||||
|
nsys=args.nsys, |
||||||
|
) as prof: # , distributed_debug_mode(10, enable=True): |
||||||
|
if isinstance(plugin, MoeHybridParallelPlugin) and args.pp > 1: |
||||||
|
data_iter = iter(dataloader) |
||||||
|
for step in tqdm(range(len(dataloader)), desc="Step", disable=not coordinator.is_master()): |
||||||
|
performance_evaluator.on_step_start(step) |
||||||
|
outputs = booster.execute_pipeline( |
||||||
|
data_iter, |
||||||
|
model, |
||||||
|
criterion=lambda outputs, inputs: outputs[0], |
||||||
|
optimizer=optimizer, |
||||||
|
return_loss=True, |
||||||
|
) |
||||||
|
loss = outputs["loss"] |
||||||
|
if dist.get_rank() == dist.get_world_size() - 1: |
||||||
|
print(f"Step {step} loss: {loss}") |
||||||
|
optimizer.step() |
||||||
|
optimizer.zero_grad() |
||||||
|
|
||||||
|
performance_evaluator.on_step_end(input_ids=torch.empty(args.batch_size, args.max_length)) |
||||||
|
prof.step() |
||||||
|
print(f"rank {dist.get_rank()} step {step} passed") |
||||||
|
else: |
||||||
|
for step, batch in enumerate(tqdm(dataloader, desc="Step", disable=not coordinator.is_master())): |
||||||
|
performance_evaluator.on_step_start(step) |
||||||
|
outputs = model(**batch) |
||||||
|
loss = outputs[0] |
||||||
|
del outputs # free memory |
||||||
|
|
||||||
|
if dist.get_rank() == dist.get_world_size() - 1: |
||||||
|
print(f"Step {step} loss: {loss}") |
||||||
|
|
||||||
|
booster.backward(loss, optimizer) |
||||||
|
optimizer.step() |
||||||
|
optimizer.zero_grad() |
||||||
|
|
||||||
|
performance_evaluator.on_step_end(**batch) |
||||||
|
prof.step() |
||||||
|
|
||||||
|
performance_evaluator.on_fit_end() |
||||||
|
coordinator.print_on_master(f"Max CUDA memory usage: {get_accelerator().max_memory_allocated()/1024**2:.2f} MB") |
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__": |
||||||
|
main() |
@ -0,0 +1 @@ |
|||||||
|
../performance_evaluator.py |
@ -0,0 +1,259 @@ |
|||||||
|
# modified from llama benchmark |
||||||
|
import argparse |
||||||
|
import resource |
||||||
|
import time |
||||||
|
import warnings |
||||||
|
from contextlib import nullcontext |
||||||
|
|
||||||
|
import torch |
||||||
|
import torch.distributed as dist |
||||||
|
from data_utils import RandomDataset |
||||||
|
from model_utils import format_numel_str, get_model_numel |
||||||
|
from performance_evaluator import PerformanceEvaluator, get_profile_context |
||||||
|
from tqdm import tqdm |
||||||
|
from transformers.models.mixtral import MixtralConfig, MixtralForCausalLM |
||||||
|
|
||||||
|
import colossalai |
||||||
|
from colossalai.accelerator import get_accelerator |
||||||
|
from colossalai.booster import Booster |
||||||
|
from colossalai.booster.plugin import MoeHybridParallelPlugin |
||||||
|
from colossalai.cluster import DistCoordinator |
||||||
|
from colossalai.lazy import LazyInitContext |
||||||
|
from colossalai.nn.optimizer import HybridAdam |
||||||
|
from colossalai.shardformer import PipelineGradientCheckpointConfig |
||||||
|
|
||||||
|
warnings.filterwarnings("ignore") |
||||||
|
# ============================== |
||||||
|
# Constants |
||||||
|
# ============================== |
||||||
|
|
||||||
|
# We have lots of llamas for your choice! |
||||||
|
MODEL_CONFIGS = { |
||||||
|
"100m": MixtralConfig( |
||||||
|
max_position_embeddings=4096, |
||||||
|
num_hidden_layers=4, |
||||||
|
num_attention_heads=32, |
||||||
|
intermediate_size=768, |
||||||
|
hidden_size=768, |
||||||
|
attn_implementation="flash_attention_2", |
||||||
|
), |
||||||
|
"7b": MixtralConfig( |
||||||
|
max_position_embeddings=4096, |
||||||
|
num_hidden_layers=5, |
||||||
|
attn_implementation="flash_attention_2", |
||||||
|
), |
||||||
|
"14b": MixtralConfig( |
||||||
|
max_position_embeddings=4096, |
||||||
|
num_hidden_layers=10, |
||||||
|
attn_implementation="flash_attention_2", |
||||||
|
), |
||||||
|
} |
||||||
|
|
||||||
|
|
||||||
|
def main(): |
||||||
|
# ============================== |
||||||
|
# Parse Arguments |
||||||
|
# ============================== |
||||||
|
parser = argparse.ArgumentParser() |
||||||
|
parser.add_argument("-c", "--config", type=str, default="100m", help="Model configuration") |
||||||
|
parser.add_argument( |
||||||
|
"-p", |
||||||
|
"--plugin", |
||||||
|
choices=["3d"], |
||||||
|
default="3d", |
||||||
|
help="Choose which plugin to use", |
||||||
|
) |
||||||
|
parser.add_argument("-b", "--batch_size", type=int, default=1, help="Batch size") |
||||||
|
parser.add_argument("-s", "--num_steps", type=int, default=5, help="Number of steps to run") |
||||||
|
parser.add_argument("-i", "--ignore_steps", type=int, default=2, help="Number of steps to ignore") |
||||||
|
parser.add_argument("-g", "--grad_checkpoint", action="store_true", help="Use gradient checkpointing") |
||||||
|
parser.add_argument("-l", "--max_length", type=int, default=4096, help="Max sequence length") |
||||||
|
parser.add_argument( |
||||||
|
"-w", "--warmup_ratio", type=float, default=0.8, help="warm up ratio of non-model data. Only for gemini-auto" |
||||||
|
) |
||||||
|
parser.add_argument("-m", "--memory_limit", type=int, help="Gemini memory limit in mb") |
||||||
|
parser.add_argument("-x", "--xformers", action="store_true", help="Use xformers") |
||||||
|
parser.add_argument("--shard_param_frac", type=float, default=1.0, help="Shard param fraction. Only for gemini") |
||||||
|
parser.add_argument("--offload_optim_frac", type=float, default=0.0, help="Offload optim fraction. Only for gemini") |
||||||
|
parser.add_argument("--offload_param_frac", type=float, default=0.0, help="Offload param fraction. Only for gemini") |
||||||
|
parser.add_argument("--tp", type=int, default=1, help="Tensor parallel size") |
||||||
|
parser.add_argument("--ep", type=int, default=1, help="Expert parallel size") |
||||||
|
parser.add_argument("--sp", type=int, default=1, help="Sequence parallel size") |
||||||
|
parser.add_argument("--extra_dp", type=int, default=1, help="Extra data parallel size, used for Gemini") |
||||||
|
parser.add_argument("--pp", type=int, default=1, help="Pipeline parallel size") |
||||||
|
parser.add_argument("--mbs", type=int, default=1, help="Micro batch size of pipeline parallel") |
||||||
|
parser.add_argument("--zero", type=int, default=1, help="Zero Stage when hybrid plugin is enabled") |
||||||
|
parser.add_argument("--custom-ckpt", action="store_true", help="Customize checkpoint", default=False) |
||||||
|
|
||||||
|
parser.add_argument("--pp_style", default="1f1b", choices=["1f1b", "interleaved"]) |
||||||
|
parser.add_argument("--n_chunks", default=1, help="number of model chunks", type=eval) |
||||||
|
parser.add_argument("--profile", action="store_true", help="Profile the code") |
||||||
|
parser.add_argument( |
||||||
|
"--nsys", |
||||||
|
action="store_true", |
||||||
|
help="Use nsys for profiling. \ |
||||||
|
You should put something like this before colossalai launch: \ |
||||||
|
nsys profile -w true -t cuda,cudnn,cublas -s cpu --capture-range=cudaProfilerApi --capture-range-end=stop --cudabacktrace=true -x true --python-backtrace=cuda -o prof_out", |
||||||
|
) |
||||||
|
parser.add_argument("--disable-async-reduce", action="store_true", help="Disable the asynchronous reduce operation") |
||||||
|
parser.add_argument("--prefetch_num", type=int, default=0, help="chunk prefetch max number") |
||||||
|
parser.add_argument("--no_cache", action="store_true") |
||||||
|
parser.add_argument("--use_fp8_comm", action="store_true", default=False, help="for using fp8 during communication") |
||||||
|
parser.add_argument("--use_fp8", action="store_true", default=False, help="for using fp8 linear") |
||||||
|
parser.add_argument("--overlap_allgather", action="store_true") |
||||||
|
parser.add_argument( |
||||||
|
"--sp_mode", |
||||||
|
default="all_to_all", |
||||||
|
choices=["all_to_all"], |
||||||
|
help="Sequence parallelism mode", |
||||||
|
) |
||||||
|
parser.add_argument("--debug", action="store_true", help="Enable debug mode") |
||||||
|
args = parser.parse_args() |
||||||
|
|
||||||
|
colossalai.launch_from_torch() |
||||||
|
coordinator = DistCoordinator() |
||||||
|
|
||||||
|
# ckpt config for LLaMA3-70B on 64 H100 GPUs |
||||||
|
hybrid_kwargs = ( |
||||||
|
{ |
||||||
|
"gradient_checkpoint_config": PipelineGradientCheckpointConfig( |
||||||
|
num_ckpt_layers_per_stage=[19, 19, 19, 13], |
||||||
|
), |
||||||
|
"num_layers_per_stage": [19, 20, 20, 21], |
||||||
|
"pp_style": "interleaved", |
||||||
|
} |
||||||
|
if args.custom_ckpt |
||||||
|
else {} |
||||||
|
) |
||||||
|
|
||||||
|
# ============================== |
||||||
|
# Initialize Booster |
||||||
|
# ============================== |
||||||
|
if args.plugin == "3d": |
||||||
|
plugin = MoeHybridParallelPlugin( |
||||||
|
ep_size=args.ep, |
||||||
|
tp_size=args.tp, |
||||||
|
pp_size=args.pp, |
||||||
|
pp_style=args.pp_style, |
||||||
|
num_model_chunks=args.n_chunks, |
||||||
|
zero_stage=args.zero, |
||||||
|
sp_size=args.sp, |
||||||
|
sequence_parallelism_mode=args.sp_mode, |
||||||
|
enable_sequence_parallelism=args.sp > 1, |
||||||
|
enable_fused_normalization=torch.cuda.is_available(), |
||||||
|
enable_flash_attention=args.xformers, |
||||||
|
microbatch_size=args.mbs, |
||||||
|
precision="bf16", |
||||||
|
enable_metadata_cache=not args.no_cache, |
||||||
|
overlap_allgather=args.overlap_allgather, |
||||||
|
use_fp8=args.use_fp8, |
||||||
|
fp8_communication=args.use_fp8_comm, |
||||||
|
**hybrid_kwargs, |
||||||
|
) |
||||||
|
else: |
||||||
|
raise ValueError(f"Unknown plugin {args.plugin}") |
||||||
|
|
||||||
|
booster = Booster(plugin=plugin) |
||||||
|
|
||||||
|
# ============================== |
||||||
|
# Initialize Dataset and Dataloader |
||||||
|
# ============================== |
||||||
|
dp_size = getattr(plugin, "dp_size", coordinator.world_size) |
||||||
|
|
||||||
|
if args.config in MODEL_CONFIGS: |
||||||
|
config = MODEL_CONFIGS[args.config] |
||||||
|
else: |
||||||
|
config = MixtralConfig.from_pretrained(args.config, trust_remote_code=True) |
||||||
|
torch.cuda.manual_seed(42) |
||||||
|
|
||||||
|
dataset = RandomDataset( |
||||||
|
num_samples=args.batch_size * args.num_steps * dp_size, max_length=args.max_length, vocab_size=config.vocab_size |
||||||
|
) |
||||||
|
dataloader = plugin.prepare_dataloader(dataset, batch_size=args.batch_size, shuffle=True, drop_last=True, seed=42) |
||||||
|
|
||||||
|
# ============================== |
||||||
|
# Initialize Model and Optimizer |
||||||
|
# ============================== |
||||||
|
init_ctx = ( |
||||||
|
LazyInitContext(default_device=get_accelerator().get_current_device()) |
||||||
|
if isinstance(plugin, MoeHybridParallelPlugin) |
||||||
|
else nullcontext() |
||||||
|
) |
||||||
|
|
||||||
|
with init_ctx: |
||||||
|
model = MixtralForCausalLM(config=config).to(torch.bfloat16) |
||||||
|
|
||||||
|
if args.grad_checkpoint: |
||||||
|
model.gradient_checkpointing_enable() |
||||||
|
|
||||||
|
model_numel = get_model_numel(model) |
||||||
|
coordinator.print_on_master(f"Model params: {format_numel_str(model_numel)}") |
||||||
|
performance_evaluator = PerformanceEvaluator( |
||||||
|
model_numel, |
||||||
|
model.config.num_hidden_layers, |
||||||
|
model.config.hidden_size, |
||||||
|
model.config.vocab_size, |
||||||
|
args.grad_checkpoint, |
||||||
|
args.ignore_steps, |
||||||
|
dp_world_size=dp_size, |
||||||
|
) |
||||||
|
|
||||||
|
optimizer = HybridAdam(model.parameters()) |
||||||
|
torch.set_default_dtype(torch.bfloat16) |
||||||
|
model, optimizer, _, dataloader, _ = booster.boost(model, optimizer, dataloader=dataloader) |
||||||
|
|
||||||
|
torch.set_default_dtype(torch.float) |
||||||
|
coordinator.print_on_master( |
||||||
|
f"Booster init max CUDA memory: {get_accelerator().max_memory_allocated()/1024**2:.2f} MB" |
||||||
|
) |
||||||
|
coordinator.print_on_master( |
||||||
|
f"Booster init max CPU memory: {resource.getrusage(resource.RUSAGE_SELF).ru_maxrss/1024:.2f} MB" |
||||||
|
) |
||||||
|
|
||||||
|
with get_profile_context( |
||||||
|
args.profile, |
||||||
|
args.ignore_steps, |
||||||
|
1, # avoid creating massive log files |
||||||
|
save_dir=f"profile/{time.strftime('%H:%M', time.localtime())}-{args.plugin}-llama-{args.config}", |
||||||
|
nsys=args.nsys, |
||||||
|
) as prof: |
||||||
|
if isinstance(plugin, MoeHybridParallelPlugin) and args.pp > 1: |
||||||
|
data_iter = iter(dataloader) |
||||||
|
for step in tqdm(range(len(dataloader)), desc="Step", disable=not coordinator.is_master()): |
||||||
|
performance_evaluator.on_step_start(step) |
||||||
|
outputs = booster.execute_pipeline( |
||||||
|
data_iter, |
||||||
|
model, |
||||||
|
criterion=lambda outputs, inputs: outputs[0], |
||||||
|
optimizer=optimizer, |
||||||
|
return_loss=True, |
||||||
|
) |
||||||
|
loss = outputs["loss"] |
||||||
|
if dist.get_rank() == dist.get_world_size() - 1: |
||||||
|
print(f"Step {step} loss: {loss}") |
||||||
|
optimizer.step() |
||||||
|
optimizer.zero_grad() |
||||||
|
|
||||||
|
performance_evaluator.on_step_end(input_ids=torch.empty(args.batch_size, args.max_length)) |
||||||
|
prof.step() |
||||||
|
else: |
||||||
|
for step, batch in enumerate(tqdm(dataloader, desc="Step", disable=not coordinator.is_master())): |
||||||
|
performance_evaluator.on_step_start(step) |
||||||
|
outputs = model(**batch) |
||||||
|
loss = outputs[0] |
||||||
|
del outputs # free memory |
||||||
|
|
||||||
|
if dist.get_rank() == dist.get_world_size() - 1: |
||||||
|
print(f"Step {step} loss: {loss}") |
||||||
|
booster.backward(loss, optimizer) |
||||||
|
optimizer.step() |
||||||
|
optimizer.zero_grad() |
||||||
|
|
||||||
|
performance_evaluator.on_step_end(**batch) |
||||||
|
prof.step() |
||||||
|
performance_evaluator.on_fit_end() |
||||||
|
coordinator.print_on_master(f"Max CUDA memory usage: {get_accelerator().max_memory_allocated()/1024**2:.2f} MB") |
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__": |
||||||
|
main() |
@ -0,0 +1 @@ |
|||||||
|
../performance_evaluator.py |
Loading…
Reference in new issue