Browse Source

[lr-scheduler] fix load state dict and add test (#5369)

pull/5380/head
Hongxin Liu 10 months ago committed by GitHub
parent
commit
c53ddda88f
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
  1. 82
      colossalai/nn/lr_scheduler/delayed.py
  2. 20
      tests/test_optimizer/test_lr_scheduler.py

82
colossalai/nn/lr_scheduler/delayed.py

@ -6,6 +6,8 @@ if Version(torch.__version__) >= Version("2.0.0"):
else:
from torch.optim.lr_scheduler import _LRScheduler
from colossalai.logging import get_dist_logger
class _enable_get_lr_call:
def __init__(self, o):
@ -19,7 +21,39 @@ class _enable_get_lr_call:
self.o._get_lr_called_within_step = False
class DelayerScheduler(_LRScheduler):
class TwoStageScheduler(_LRScheduler):
def __init__(self, optimizer, after_scheduler: _LRScheduler, last_epoch=-1):
self.after_scheduler = after_scheduler
self.finished = False
super().__init__(optimizer, last_epoch)
def state_dict(self):
state_dict = {key: value for key, value in self.__dict__.items() if key not in "optimizer"}
if isinstance(state_dict["after_scheduler"], _LRScheduler):
state_dict["after_scheduler_type"] = type(state_dict["after_scheduler"]).__name__
state_dict["after_scheduler_dict"] = state_dict["after_scheduler"].state_dict()
del state_dict["after_scheduler"]
else:
raise NotImplementedError()
return state_dict
def load_state_dict(self, state_dict):
if "after_scheduler_dict" not in state_dict:
logger = get_dist_logger()
logger.warning(
"after_scheduler_dict is not found, skip loading after_scheduler. This may cause unexpected behavior."
)
else:
self.after_scheduler.load_state_dict(state_dict["after_scheduler_dict"])
state_dict = {
key: value
for key, value in state_dict.items()
if key not in ("after_scheduler_type", "after_scheduler_dict")
}
super().load_state_dict(state_dict)
class DelayerScheduler(TwoStageScheduler):
"""Starts with a flat lr schedule until it reaches N epochs then applies
the specific scheduler (For example: ReduceLROnPlateau)
@ -35,19 +69,7 @@ class DelayerScheduler(_LRScheduler):
if delay_epochs < 0:
raise ValueError(f"delay_epochs must >= 0, got {delay_epochs}")
self.delay_epochs = delay_epochs
self.after_scheduler = after_scheduler
self.finished = False
super().__init__(optimizer, last_epoch)
def state_dict(self):
state_dict = {key: value for key, value in self.__dict__.items() if key not in "optimizer"}
if isinstance(state_dict["after_scheduler"], _LRScheduler):
state_dict["after_scheduler_type"] = type(state_dict["after_scheduler"]).__name__
state_dict["after_scheduler_dict"] = state_dict["after_scheduler"].state_dict()
del state_dict["after_scheduler"]
else:
raise NotImplementedError()
return state_dict
super().__init__(optimizer, after_scheduler, last_epoch)
def get_lr(self):
if self.last_epoch >= self.delay_epochs:
@ -71,7 +93,7 @@ class DelayerScheduler(_LRScheduler):
return super(DelayerScheduler, self).step(epoch)
class WarmupScheduler(_LRScheduler):
class WarmupScheduler(TwoStageScheduler):
"""Starts with a linear warmup lr schedule until it reaches N epochs then applies
the specific scheduler (For example: ReduceLROnPlateau).
@ -85,19 +107,7 @@ class WarmupScheduler(_LRScheduler):
def __init__(self, optimizer, warmup_epochs, after_scheduler, last_epoch=-1):
self.warmup_epochs = int(warmup_epochs)
self.after_scheduler = after_scheduler
self.finished = False
super().__init__(optimizer, last_epoch)
def state_dict(self):
state_dict = {key: value for key, value in self.__dict__.items() if key not in "optimizer"}
if isinstance(state_dict["after_scheduler"], _LRScheduler):
state_dict["after_scheduler_type"] = type(state_dict["after_scheduler"]).__name__
state_dict["after_scheduler_dict"] = state_dict["after_scheduler"].state_dict()
del state_dict["after_scheduler"]
else:
raise NotImplementedError()
return state_dict
super().__init__(optimizer, after_scheduler, last_epoch)
def get_lr(self):
if self.last_epoch >= self.warmup_epochs:
@ -120,7 +130,7 @@ class WarmupScheduler(_LRScheduler):
return super().step(epoch)
class WarmupDelayerScheduler(_LRScheduler):
class WarmupDelayerScheduler(TwoStageScheduler):
"""Starts with a linear warmup lr schedule until it reaches N epochs and a flat lr schedule
until it reaches M epochs then applies the specific scheduler (For example: ReduceLROnPlateau).
@ -140,19 +150,7 @@ class WarmupDelayerScheduler(_LRScheduler):
raise ValueError(f"warmup_epochs must >= 0, got {warmup_epochs}")
self.warmup_epochs = warmup_epochs
self.delay_epochs = delay_epochs
self.after_scheduler = after_scheduler
self.finished = False
super().__init__(optimizer, last_epoch)
def state_dict(self):
state_dict = {key: value for key, value in self.__dict__.items() if key not in "optimizer"}
if isinstance(state_dict["after_scheduler"], _LRScheduler):
state_dict["after_scheduler_type"] = type(state_dict["after_scheduler"]).__name__
state_dict["after_scheduler_dict"] = state_dict["after_scheduler"].state_dict()
del state_dict["after_scheduler"]
else:
raise NotImplementedError()
return state_dict
super().__init__(optimizer, after_scheduler, last_epoch)
def get_lr(self):
if self.last_epoch >= self.warmup_epochs + self.delay_epochs:

20
tests/test_optimizer/test_lr_scheduler.py

@ -0,0 +1,20 @@
import torch.nn as nn
from torch.optim import Adam
from colossalai.nn.lr_scheduler import CosineAnnealingWarmupLR
def test_lr_scheduler_save_load():
model = nn.Linear(10, 10)
optimizer = Adam(model.parameters(), lr=1e-3)
scheduler = CosineAnnealingWarmupLR(optimizer, total_steps=5, warmup_steps=2)
new_scheduler = CosineAnnealingWarmupLR(optimizer, total_steps=5, warmup_steps=2)
for _ in range(5):
scheduler.step()
state_dict = scheduler.state_dict()
new_scheduler.load_state_dict(state_dict)
assert state_dict == new_scheduler.state_dict()
if __name__ == "__main__":
test_lr_scheduler_save_load()
Loading…
Cancel
Save