|
|
|
@ -6,6 +6,8 @@ if Version(torch.__version__) >= Version("2.0.0"):
|
|
|
|
|
else: |
|
|
|
|
from torch.optim.lr_scheduler import _LRScheduler |
|
|
|
|
|
|
|
|
|
from colossalai.logging import get_dist_logger |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class _enable_get_lr_call: |
|
|
|
|
def __init__(self, o): |
|
|
|
@ -19,7 +21,39 @@ class _enable_get_lr_call:
|
|
|
|
|
self.o._get_lr_called_within_step = False |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class DelayerScheduler(_LRScheduler): |
|
|
|
|
class TwoStageScheduler(_LRScheduler): |
|
|
|
|
def __init__(self, optimizer, after_scheduler: _LRScheduler, last_epoch=-1): |
|
|
|
|
self.after_scheduler = after_scheduler |
|
|
|
|
self.finished = False |
|
|
|
|
super().__init__(optimizer, last_epoch) |
|
|
|
|
|
|
|
|
|
def state_dict(self): |
|
|
|
|
state_dict = {key: value for key, value in self.__dict__.items() if key not in "optimizer"} |
|
|
|
|
if isinstance(state_dict["after_scheduler"], _LRScheduler): |
|
|
|
|
state_dict["after_scheduler_type"] = type(state_dict["after_scheduler"]).__name__ |
|
|
|
|
state_dict["after_scheduler_dict"] = state_dict["after_scheduler"].state_dict() |
|
|
|
|
del state_dict["after_scheduler"] |
|
|
|
|
else: |
|
|
|
|
raise NotImplementedError() |
|
|
|
|
return state_dict |
|
|
|
|
|
|
|
|
|
def load_state_dict(self, state_dict): |
|
|
|
|
if "after_scheduler_dict" not in state_dict: |
|
|
|
|
logger = get_dist_logger() |
|
|
|
|
logger.warning( |
|
|
|
|
"after_scheduler_dict is not found, skip loading after_scheduler. This may cause unexpected behavior." |
|
|
|
|
) |
|
|
|
|
else: |
|
|
|
|
self.after_scheduler.load_state_dict(state_dict["after_scheduler_dict"]) |
|
|
|
|
state_dict = { |
|
|
|
|
key: value |
|
|
|
|
for key, value in state_dict.items() |
|
|
|
|
if key not in ("after_scheduler_type", "after_scheduler_dict") |
|
|
|
|
} |
|
|
|
|
super().load_state_dict(state_dict) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class DelayerScheduler(TwoStageScheduler): |
|
|
|
|
"""Starts with a flat lr schedule until it reaches N epochs then applies |
|
|
|
|
the specific scheduler (For example: ReduceLROnPlateau) |
|
|
|
|
|
|
|
|
@ -35,19 +69,7 @@ class DelayerScheduler(_LRScheduler):
|
|
|
|
|
if delay_epochs < 0: |
|
|
|
|
raise ValueError(f"delay_epochs must >= 0, got {delay_epochs}") |
|
|
|
|
self.delay_epochs = delay_epochs |
|
|
|
|
self.after_scheduler = after_scheduler |
|
|
|
|
self.finished = False |
|
|
|
|
super().__init__(optimizer, last_epoch) |
|
|
|
|
|
|
|
|
|
def state_dict(self): |
|
|
|
|
state_dict = {key: value for key, value in self.__dict__.items() if key not in "optimizer"} |
|
|
|
|
if isinstance(state_dict["after_scheduler"], _LRScheduler): |
|
|
|
|
state_dict["after_scheduler_type"] = type(state_dict["after_scheduler"]).__name__ |
|
|
|
|
state_dict["after_scheduler_dict"] = state_dict["after_scheduler"].state_dict() |
|
|
|
|
del state_dict["after_scheduler"] |
|
|
|
|
else: |
|
|
|
|
raise NotImplementedError() |
|
|
|
|
return state_dict |
|
|
|
|
super().__init__(optimizer, after_scheduler, last_epoch) |
|
|
|
|
|
|
|
|
|
def get_lr(self): |
|
|
|
|
if self.last_epoch >= self.delay_epochs: |
|
|
|
@ -71,7 +93,7 @@ class DelayerScheduler(_LRScheduler):
|
|
|
|
|
return super(DelayerScheduler, self).step(epoch) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class WarmupScheduler(_LRScheduler): |
|
|
|
|
class WarmupScheduler(TwoStageScheduler): |
|
|
|
|
"""Starts with a linear warmup lr schedule until it reaches N epochs then applies |
|
|
|
|
the specific scheduler (For example: ReduceLROnPlateau). |
|
|
|
|
|
|
|
|
@ -85,19 +107,7 @@ class WarmupScheduler(_LRScheduler):
|
|
|
|
|
|
|
|
|
|
def __init__(self, optimizer, warmup_epochs, after_scheduler, last_epoch=-1): |
|
|
|
|
self.warmup_epochs = int(warmup_epochs) |
|
|
|
|
self.after_scheduler = after_scheduler |
|
|
|
|
self.finished = False |
|
|
|
|
super().__init__(optimizer, last_epoch) |
|
|
|
|
|
|
|
|
|
def state_dict(self): |
|
|
|
|
state_dict = {key: value for key, value in self.__dict__.items() if key not in "optimizer"} |
|
|
|
|
if isinstance(state_dict["after_scheduler"], _LRScheduler): |
|
|
|
|
state_dict["after_scheduler_type"] = type(state_dict["after_scheduler"]).__name__ |
|
|
|
|
state_dict["after_scheduler_dict"] = state_dict["after_scheduler"].state_dict() |
|
|
|
|
del state_dict["after_scheduler"] |
|
|
|
|
else: |
|
|
|
|
raise NotImplementedError() |
|
|
|
|
return state_dict |
|
|
|
|
super().__init__(optimizer, after_scheduler, last_epoch) |
|
|
|
|
|
|
|
|
|
def get_lr(self): |
|
|
|
|
if self.last_epoch >= self.warmup_epochs: |
|
|
|
@ -120,7 +130,7 @@ class WarmupScheduler(_LRScheduler):
|
|
|
|
|
return super().step(epoch) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class WarmupDelayerScheduler(_LRScheduler): |
|
|
|
|
class WarmupDelayerScheduler(TwoStageScheduler): |
|
|
|
|
"""Starts with a linear warmup lr schedule until it reaches N epochs and a flat lr schedule |
|
|
|
|
until it reaches M epochs then applies the specific scheduler (For example: ReduceLROnPlateau). |
|
|
|
|
|
|
|
|
@ -140,19 +150,7 @@ class WarmupDelayerScheduler(_LRScheduler):
|
|
|
|
|
raise ValueError(f"warmup_epochs must >= 0, got {warmup_epochs}") |
|
|
|
|
self.warmup_epochs = warmup_epochs |
|
|
|
|
self.delay_epochs = delay_epochs |
|
|
|
|
self.after_scheduler = after_scheduler |
|
|
|
|
self.finished = False |
|
|
|
|
super().__init__(optimizer, last_epoch) |
|
|
|
|
|
|
|
|
|
def state_dict(self): |
|
|
|
|
state_dict = {key: value for key, value in self.__dict__.items() if key not in "optimizer"} |
|
|
|
|
if isinstance(state_dict["after_scheduler"], _LRScheduler): |
|
|
|
|
state_dict["after_scheduler_type"] = type(state_dict["after_scheduler"]).__name__ |
|
|
|
|
state_dict["after_scheduler_dict"] = state_dict["after_scheduler"].state_dict() |
|
|
|
|
del state_dict["after_scheduler"] |
|
|
|
|
else: |
|
|
|
|
raise NotImplementedError() |
|
|
|
|
return state_dict |
|
|
|
|
super().__init__(optimizer, after_scheduler, last_epoch) |
|
|
|
|
|
|
|
|
|
def get_lr(self): |
|
|
|
|
if self.last_epoch >= self.warmup_epochs + self.delay_epochs: |
|
|
|
|