mirror of https://github.com/hpcaitech/ColossalAI
[autochunk] add benchmark for transformer and alphafold (#2543)
parent
9885ec2b2e
commit
c4b15661d7
|
@ -0,0 +1,131 @@
|
|||
import time
|
||||
from typing import Any, Dict, List
|
||||
|
||||
import torch
|
||||
import torch.fx
|
||||
|
||||
import colossalai
|
||||
from colossalai.autochunk.autochunk_codegen import AUTOCHUNK_AVAILABLE
|
||||
from colossalai.fx.graph_module import ColoGraphModule
|
||||
from colossalai.fx.passes.meta_info_prop import MetaInfoProp
|
||||
from colossalai.utils import free_port
|
||||
|
||||
if AUTOCHUNK_AVAILABLE:
|
||||
from colossalai.autochunk.autochunk_codegen import AutoChunkCodeGen
|
||||
from colossalai.fx.profiler import MetaTensor
|
||||
from colossalai.fx.tracer.experimental import ColoTracer, symbolic_trace
|
||||
|
||||
|
||||
def _benchmark_evoformer_stack_gm(
|
||||
data_args: tuple,
|
||||
max_memory: int,
|
||||
get_model: Any,
|
||||
get_data: Any,
|
||||
) -> None:
|
||||
# build model and input
|
||||
model = get_model()
|
||||
meta_args, concrete_args = get_data(*data_args)
|
||||
if concrete_args is None:
|
||||
concrete_args = []
|
||||
|
||||
# trace the meta graph and setup codegen
|
||||
meta_graph = symbolic_trace(
|
||||
model,
|
||||
meta_args={k: v.to(torch.device("meta")) for k, v in meta_args},
|
||||
concrete_args={k: v for k, v in concrete_args},
|
||||
)
|
||||
interp = MetaInfoProp(meta_graph)
|
||||
meta_tensors = [MetaTensor(i[1], fake_device="cuda:0") for i in meta_args] + [i[1] for i in concrete_args]
|
||||
interp.propagate(*meta_tensors)
|
||||
codegen = AutoChunkCodeGen(
|
||||
meta_graph,
|
||||
max_memory=max_memory,
|
||||
)
|
||||
|
||||
# trace and recompile
|
||||
# MetaInfoProp requires symbolic_trace but CodeGen requires ColoTracer
|
||||
graph = ColoTracer().trace(
|
||||
model,
|
||||
meta_args={k: v.to(torch.device("meta")) for k, v in meta_args},
|
||||
concrete_args={k: v for k, v in concrete_args},
|
||||
)
|
||||
graph.set_codegen(codegen)
|
||||
gm = ColoGraphModule(model, graph, ckpt_codegen=False)
|
||||
gm.recompile()
|
||||
|
||||
# init inputs
|
||||
inputs = [i[1] for i in meta_args] + [i[1] for i in concrete_args]
|
||||
inputs = [i.cuda() if isinstance(i, torch.Tensor) else i for i in inputs]
|
||||
model.cuda()
|
||||
|
||||
# bench
|
||||
mem = _benchmark_memory(gm, inputs)
|
||||
speed = _benchmark_speed(gm, inputs)
|
||||
print("evoformer stack gm, mem: %.2fMB, time: %.4fs, data_args: %s" % (mem, speed, str(data_args)))
|
||||
|
||||
|
||||
def _benchmark_evoformer_stack_origin(
|
||||
data_args: tuple,
|
||||
get_model: Any,
|
||||
get_data: Any,
|
||||
) -> None:
|
||||
# build model and input
|
||||
model = get_model()
|
||||
meta_args, concrete_args = get_data(*data_args)
|
||||
if concrete_args is None:
|
||||
concrete_args = []
|
||||
|
||||
# init inputs
|
||||
inputs = [i[1] for i in meta_args] + [i[1] for i in concrete_args]
|
||||
inputs = [i.cuda() if isinstance(i, torch.Tensor) else i for i in inputs]
|
||||
model.cuda()
|
||||
|
||||
# bench
|
||||
mem = _benchmark_memory(model, inputs)
|
||||
speed = _benchmark_speed(model, inputs)
|
||||
print("evoformer stack origin, mem: %.2fMB, time: %.4fs, data_args: %s" % (mem, speed, str(data_args)))
|
||||
|
||||
|
||||
def _benchmark_memory(model, inputs):
|
||||
with torch.no_grad():
|
||||
torch.cuda.reset_peak_memory_stats()
|
||||
now_mem = torch.cuda.memory_allocated() / 1024**2
|
||||
model(*[i.clone() if isinstance(i, torch.Tensor) else i for i in inputs])
|
||||
new_max_mem = torch.cuda.max_memory_allocated() / 1024**2
|
||||
return new_max_mem - now_mem
|
||||
|
||||
|
||||
def _benchmark_speed(model, inputs, loop=5):
|
||||
with torch.no_grad():
|
||||
for _ in range(loop // 2 + 1):
|
||||
model(*inputs)
|
||||
torch.cuda.synchronize()
|
||||
time1 = time.time()
|
||||
for _ in range(loop):
|
||||
model(*inputs)
|
||||
torch.cuda.synchronize()
|
||||
time2 = time.time()
|
||||
return (time2 - time1) / loop
|
||||
|
||||
|
||||
def benchmark_evoformer_stack():
|
||||
from test_autochunk_evoformer_stack import get_data, get_model
|
||||
data_args = [128, 256]
|
||||
print("")
|
||||
_benchmark_evoformer_stack_origin(data_args, get_model, get_data)
|
||||
_benchmark_evoformer_stack_gm(data_args, 600, get_model, get_data)
|
||||
_benchmark_evoformer_stack_gm(data_args, 400, get_model, get_data)
|
||||
_benchmark_evoformer_stack_gm(data_args, None, get_model, get_data)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# launch colossalai
|
||||
colossalai.launch(
|
||||
config={},
|
||||
rank=0,
|
||||
world_size=1,
|
||||
host="localhost",
|
||||
port=free_port(),
|
||||
backend="nccl",
|
||||
)
|
||||
benchmark_evoformer_stack()
|
|
@ -12,7 +12,7 @@ try:
|
|||
except:
|
||||
HAS_REPO = False
|
||||
|
||||
from test_alphafold_utils import run_test
|
||||
from test_autochunk_alphafold_utils import run_test
|
||||
|
||||
from colossalai.autochunk.autochunk_codegen import AUTOCHUNK_AVAILABLE
|
||||
|
|
@ -12,7 +12,7 @@ try:
|
|||
except:
|
||||
HAS_REPO = False
|
||||
|
||||
from test_alphafold_utils import run_test
|
||||
from test_autochunk_alphafold_utils import run_test
|
||||
|
||||
from colossalai.autochunk.autochunk_codegen import AUTOCHUNK_AVAILABLE
|
||||
|
|
@ -11,7 +11,7 @@ try:
|
|||
HAS_REPO = True
|
||||
except:
|
||||
HAS_REPO = False
|
||||
from test_alphafold_utils import run_test
|
||||
from test_autochunk_alphafold_utils import run_test
|
||||
|
||||
from colossalai.autochunk.autochunk_codegen import AUTOCHUNK_AVAILABLE
|
||||
|
|
@ -13,7 +13,7 @@ except:
|
|||
MODELS = []
|
||||
HAS_REPO = False
|
||||
|
||||
from test_diffuser_utils import run_test
|
||||
from test_autochunk_diffuser_utils import run_test
|
||||
|
||||
from colossalai.autochunk.autochunk_codegen import AUTOCHUNK_AVAILABLE
|
||||
|
|
@ -0,0 +1,150 @@
|
|||
import time
|
||||
from typing import Any, Dict, List
|
||||
|
||||
import torch
|
||||
import torch.fx
|
||||
|
||||
import colossalai
|
||||
from colossalai.autochunk.autochunk_codegen import AUTOCHUNK_AVAILABLE
|
||||
from colossalai.fx.graph_module import ColoGraphModule
|
||||
from colossalai.fx.passes.meta_info_prop import MetaInfoProp
|
||||
from colossalai.fx.profiler import parameter_size
|
||||
from colossalai.utils import free_port
|
||||
|
||||
if AUTOCHUNK_AVAILABLE:
|
||||
from colossalai.autochunk.autochunk_codegen import AutoChunkCodeGen
|
||||
from colossalai.fx.profiler import MetaTensor
|
||||
from colossalai.fx.tracer.experimental import ColoTracer, symbolic_trace
|
||||
|
||||
|
||||
def _benchmark_autochunk_gpt_gm(
|
||||
model: Any,
|
||||
data: tuple,
|
||||
max_memory: int = None,
|
||||
) -> None:
|
||||
model = model.cuda().eval()
|
||||
|
||||
# build model and input
|
||||
meta_args, concrete_args, sequence = data
|
||||
if concrete_args is None:
|
||||
concrete_args = {}
|
||||
|
||||
# trace the meta graph and setup codegen
|
||||
meta_graph = symbolic_trace(
|
||||
model,
|
||||
meta_args={k: v.to(torch.device("meta")) for k, v in meta_args.items()},
|
||||
concrete_args={k: v for k, v in concrete_args.items()},
|
||||
)
|
||||
interp = MetaInfoProp(meta_graph)
|
||||
meta_tensors = [meta_args[i] if i in meta_args else concrete_args[i] for i in sequence]
|
||||
meta_tensors = [MetaTensor(i, fake_device="cuda:0") if isinstance(i, torch.Tensor) else i for i in meta_tensors]
|
||||
interp.propagate(*meta_tensors)
|
||||
codegen = AutoChunkCodeGen(
|
||||
meta_graph,
|
||||
max_memory=max_memory,
|
||||
)
|
||||
|
||||
# trace and recompile
|
||||
# MetaInfoProp requires symbolic_trace but CodeGen requires ColoTracer
|
||||
graph = ColoTracer().trace(
|
||||
model.cuda().eval(),
|
||||
meta_args={k: v.to(torch.device("meta")) for k, v in meta_args.items()},
|
||||
concrete_args={k: v for k, v in concrete_args.items()},
|
||||
)
|
||||
graph.set_codegen(codegen)
|
||||
gm = ColoGraphModule(model, graph, ckpt_codegen=False)
|
||||
gm.recompile()
|
||||
|
||||
# init inputs
|
||||
inputs = [meta_args[i] if i in meta_args else concrete_args[i] for i in sequence]
|
||||
inputs = [i.cuda() if isinstance(i, torch.Tensor) else i for i in inputs]
|
||||
model.cuda().eval()
|
||||
|
||||
# bench
|
||||
para_mem = float(parameter_size(model)) / 1024**2 * 6
|
||||
act_mem = _benchmark_memory(gm, inputs)
|
||||
speed = _benchmark_speed(gm, inputs)
|
||||
print("gpt autochunk, time: %.4fs, act mem: %.2fMB, para mem: %.2fMB, all mem: %.2fMB" %
|
||||
(speed, act_mem, para_mem, act_mem + para_mem))
|
||||
|
||||
|
||||
def _benchmark_autochunk_gpt_origin(
|
||||
model: Any,
|
||||
data: tuple,
|
||||
) -> None:
|
||||
# build model and input
|
||||
meta_args, concrete_args, sequence = data
|
||||
if concrete_args is None:
|
||||
concrete_args = {}
|
||||
|
||||
# init inputs
|
||||
inputs = [meta_args[i] if i in meta_args else concrete_args[i] for i in sequence]
|
||||
inputs = [i.cuda() if isinstance(i, torch.Tensor) else i for i in inputs]
|
||||
model.cuda().eval()
|
||||
|
||||
# bench
|
||||
para_mem = float(parameter_size(model)) / 1024**2 * 6
|
||||
act_mem = _benchmark_memory(model, inputs)
|
||||
speed = _benchmark_speed(model, inputs)
|
||||
print("gpt origin, time: %.4fs, act mem: %.2fMB, para mem: %.2fMB, all mem: %.2fMB" %
|
||||
(speed, act_mem, para_mem, act_mem + para_mem))
|
||||
return act_mem
|
||||
|
||||
|
||||
def _benchmark_memory(model, inputs):
|
||||
with torch.no_grad():
|
||||
torch.cuda.reset_peak_memory_stats()
|
||||
now_mem = float(torch.cuda.memory_allocated()) / 1024**2
|
||||
model(*[i.clone() if isinstance(i, torch.Tensor) else i for i in inputs])
|
||||
new_max_mem = float(torch.cuda.max_memory_allocated()) / 1024**2
|
||||
return new_max_mem - now_mem
|
||||
|
||||
|
||||
def _benchmark_speed(model, inputs, loop=5):
|
||||
with torch.no_grad():
|
||||
for _ in range(loop // 2 + 1):
|
||||
model(*inputs)
|
||||
torch.cuda.synchronize()
|
||||
time1 = time.time()
|
||||
for _ in range(loop):
|
||||
model(*inputs)
|
||||
torch.cuda.synchronize()
|
||||
time2 = time.time()
|
||||
return (time2 - time1) / loop
|
||||
|
||||
|
||||
def benchmark_autochunk_gpt(batch=1, seq=512, n_embd=768, n_head=12):
|
||||
from test_autochunk_gpt import GPT2Config, GPT2Model, get_data
|
||||
model = GPT2Model
|
||||
config = GPT2Config(n_embd=n_embd, n_position=seq, n_layer=2, n_head=n_head)
|
||||
config.max_position_embeddings = seq
|
||||
model = model(config=config)
|
||||
shape = [batch, seq]
|
||||
print("\nbatch: %d, seq: %d, n_embd: %d, n_head: %d" % (batch, seq, n_embd, n_head))
|
||||
max_mem = _benchmark_autochunk_gpt_origin(model, get_data(shape))
|
||||
for ratio in [0.5, 0.4, 0.3, 0.2]:
|
||||
try:
|
||||
_benchmark_autochunk_gpt_gm(model, get_data(shape), max_mem * ratio)
|
||||
except RuntimeError as e:
|
||||
if e.args[0] == 'Search failed. Try a larger memory threshold.':
|
||||
break
|
||||
except Exception as e:
|
||||
raise e
|
||||
_benchmark_autochunk_gpt_gm(model, get_data(shape), None)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# launch colossalai
|
||||
colossalai.launch(
|
||||
config={},
|
||||
rank=0,
|
||||
world_size=1,
|
||||
host="localhost",
|
||||
port=free_port(),
|
||||
backend="nccl",
|
||||
)
|
||||
benchmark_autochunk_gpt(batch=1, seq=1024, n_embd=768, n_head=12)
|
||||
benchmark_autochunk_gpt(batch=1, seq=2048, n_embd=768, n_head=12)
|
||||
benchmark_autochunk_gpt(batch=1, seq=4096, n_embd=768, n_head=12)
|
||||
benchmark_autochunk_gpt(batch=1, seq=6144, n_embd=768, n_head=12)
|
||||
benchmark_autochunk_gpt(batch=1, seq=8192, n_embd=768, n_head=12)
|
|
@ -13,7 +13,7 @@ except:
|
|||
MODELS = []
|
||||
HAS_REPO = False
|
||||
|
||||
from test_transformer_utils import run_test
|
||||
from test_autochunk_transformer_utils import run_test
|
||||
|
||||
from colossalai.autochunk.autochunk_codegen import AUTOCHUNK_AVAILABLE
|
||||
|
Loading…
Reference in New Issue