mirror of https://github.com/hpcaitech/ColossalAI
[docs] updatad docs of hybrid adam and cpu adam (#552)
parent
014bac0c49
commit
c44d797072
|
@ -1,9 +1,56 @@
|
||||||
import math
|
import math
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
|
|
||||||
|
from colossalai.registry import OPTIMIZERS
|
||||||
|
|
||||||
|
|
||||||
|
@OPTIMIZERS.register_module
|
||||||
class CPUAdam(torch.optim.Optimizer):
|
class CPUAdam(torch.optim.Optimizer):
|
||||||
|
"""Implements Adam algorithm.
|
||||||
|
|
||||||
|
Supports parameters updating on both GPU and CPU, depanding on the device of paramters.
|
||||||
|
But the parameters and gradients should on the same device:
|
||||||
|
* Parameters on CPU and gradients on CPU is allowed.
|
||||||
|
* Parameters on GPU and gradients on GPU is allowed.
|
||||||
|
* Parameters on GPU and gradients on CPU is **not** allowed.
|
||||||
|
|
||||||
|
Requires ColossalAI to be installed via ``pip install .``.
|
||||||
|
|
||||||
|
This version of CPU Adam accelates parameters updating on CPU with SIMD.
|
||||||
|
Support of AVX2 or AVX512 is required.
|
||||||
|
|
||||||
|
The GPU part is implemented in an naive way.
|
||||||
|
|
||||||
|
CPU Adam also supports the hybrid precision calculation, eg. fp32 parameters and fp16 gradients.
|
||||||
|
|
||||||
|
:class:`colossalai.nn.optimizer.CPUAdam` may be used as a drop-in replacement for ``torch.optim.AdamW``,
|
||||||
|
or ``torch.optim.Adam`` with ``adamw_mode=False``
|
||||||
|
|
||||||
|
Adam was been proposed in `Adam: A Method for Stochastic Optimization`_.
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
model_params (iterable): iterable of parameters of dicts defining
|
||||||
|
parameter groups.
|
||||||
|
lr (float, optional): learning rate. (default: 1e-3)
|
||||||
|
betas (Tuple[float, float], optional): coefficients used for computing
|
||||||
|
running averages of gradient and its square. (default: (0.9, 0.999))
|
||||||
|
eps (float, optional): term added to the denominator to improve
|
||||||
|
numerical stability. (default: 1e-8)
|
||||||
|
weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
|
||||||
|
amsgrad (boolean, optional): whether to use the AMSGrad variant of this
|
||||||
|
algorithm from the paper `On the Convergence of Adam and Beyond`_
|
||||||
|
(default: False) NOT SUPPORTED yet in CPUAdam!
|
||||||
|
adamw_mode (boolean, optional): Apply L2 regularization or weight decay
|
||||||
|
True for decoupled weight decay(also known as AdamW) (default: True)
|
||||||
|
simd_log (boolean, optional): whether to show if you are using SIMD to
|
||||||
|
accelerate. (default: False)
|
||||||
|
|
||||||
|
.. _Adam: A Method for Stochastic Optimization:
|
||||||
|
https://arxiv.org/abs/1412.6980
|
||||||
|
.. _On the Convergence of Adam and Beyond:
|
||||||
|
https://openreview.net/forum?id=ryQu7f-RZ
|
||||||
|
"""
|
||||||
|
|
||||||
optimizer_id = 0
|
optimizer_id = 0
|
||||||
# Number of fp32 shards for per parameter
|
# Number of fp32 shards for per parameter
|
||||||
# Param weight, grad, momentum and variance
|
# Param weight, grad, momentum and variance
|
||||||
|
@ -18,11 +65,6 @@ class CPUAdam(torch.optim.Optimizer):
|
||||||
weight_decay=0,
|
weight_decay=0,
|
||||||
adamw_mode=True,
|
adamw_mode=True,
|
||||||
simd_log=False):
|
simd_log=False):
|
||||||
"""
|
|
||||||
An implementation equivalent to `torch.optim.Adam`.
|
|
||||||
The difference is that model_params are sharded parameters belonging to a ShardedModelV2 instance.
|
|
||||||
The sharded param of model_params can resident on both CPU and CUDA.
|
|
||||||
"""
|
|
||||||
|
|
||||||
default_args = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, bias_correction=bias_correction)
|
default_args = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, bias_correction=bias_correction)
|
||||||
super(CPUAdam, self).__init__(model_params, default_args)
|
super(CPUAdam, self).__init__(model_params, default_args)
|
||||||
|
|
|
@ -72,8 +72,8 @@ class FusedAdam(torch.optim.Optimizer):
|
||||||
else:
|
else:
|
||||||
raise RuntimeError('FusedAdam requires cuda extensions')
|
raise RuntimeError('FusedAdam requires cuda extensions')
|
||||||
|
|
||||||
def zero_grad(self):
|
def zero_grad(self, set_to_none=False):
|
||||||
if self.set_grad_none:
|
if set_to_none:
|
||||||
for group in self.param_groups:
|
for group in self.param_groups:
|
||||||
for p in group['params']:
|
for p in group['params']:
|
||||||
p.grad = None
|
p.grad = None
|
||||||
|
|
|
@ -1,7 +1,55 @@
|
||||||
import torch
|
import torch
|
||||||
from colossalai.utils import multi_tensor_applier
|
|
||||||
|
|
||||||
|
|
||||||
|
from colossalai.utils import multi_tensor_applier
|
||||||
|
from colossalai.registry import OPTIMIZERS
|
||||||
|
|
||||||
|
|
||||||
|
@OPTIMIZERS.register_module
|
||||||
class HybridAdam(torch.optim.Optimizer):
|
class HybridAdam(torch.optim.Optimizer):
|
||||||
|
"""Implements Adam algorithm.
|
||||||
|
|
||||||
|
Supports parameters updating on both GPU and CPU, depanding on the device of paramters.
|
||||||
|
But the parameters and gradients should on the same device:
|
||||||
|
* Parameters on CPU and gradients on CPU is allowed.
|
||||||
|
* Parameters on GPU and gradients on GPU is allowed.
|
||||||
|
* Parameters on GPU and gradients on CPU is **not** allowed.
|
||||||
|
|
||||||
|
Requires ColossalAI to be installed via ``pip install .``
|
||||||
|
|
||||||
|
This version of Hybrid Adam is an hybrid of CPUAdam and FusedAdam.
|
||||||
|
* For parameters updating on CPU, it uses CPUAdam.
|
||||||
|
* For parameters updating on GPU, it uses FusedAdam.
|
||||||
|
* Hybird precision calculation of fp16 and fp32 is supported, eg fp32 parameters and fp16 gradients.
|
||||||
|
|
||||||
|
:class:`colossalai.nn.optimizer.HybridAdam` may be used as a drop-in replacement for ``torch.optim.AdamW``,
|
||||||
|
or ``torch.optim.Adam`` with ``adamw_mode=False``
|
||||||
|
|
||||||
|
Adam was been proposed in `Adam: A Method for Stochastic Optimization`_.
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
model_params (iterable): iterable of parameters of dicts defining
|
||||||
|
parameter groups.
|
||||||
|
lr (float, optional): learning rate. (default: 1e-3)
|
||||||
|
betas (Tuple[float, float], optional): coefficients used for computing
|
||||||
|
running averages of gradient and its square. (default: (0.9, 0.999))
|
||||||
|
eps (float, optional): term added to the denominator to improve
|
||||||
|
numerical stability. (default: 1e-8)
|
||||||
|
weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
|
||||||
|
amsgrad (boolean, optional): whether to use the AMSGrad variant of this
|
||||||
|
algorithm from the paper `On the Convergence of Adam and Beyond`_
|
||||||
|
(default: False) NOT SUPPORTED yet in CPUAdam!
|
||||||
|
adamw_mode (boolean, optional): Apply L2 regularization or weight decay
|
||||||
|
True for decoupled weight decay(also known as AdamW) (default: True)
|
||||||
|
simd_log (boolean, optional): whether to show if you are using SIMD to
|
||||||
|
accelerate. (default: False)
|
||||||
|
|
||||||
|
.. _Adam: A Method for Stochastic Optimization:
|
||||||
|
https://arxiv.org/abs/1412.6980
|
||||||
|
.. _On the Convergence of Adam and Beyond:
|
||||||
|
https://openreview.net/forum?id=ryQu7f-RZ
|
||||||
|
"""
|
||||||
|
|
||||||
optimizer_id = 0
|
optimizer_id = 0
|
||||||
# Number of fp32 shards for per parameter
|
# Number of fp32 shards for per parameter
|
||||||
# Param weight, grad, momentum and variance
|
# Param weight, grad, momentum and variance
|
||||||
|
@ -16,11 +64,6 @@ class HybridAdam(torch.optim.Optimizer):
|
||||||
weight_decay=0,
|
weight_decay=0,
|
||||||
adamw_mode=True,
|
adamw_mode=True,
|
||||||
simd_log=False):
|
simd_log=False):
|
||||||
"""
|
|
||||||
An implementation equivalent to `torch.optim.Adam`.
|
|
||||||
The difference is that model_params are sharded parameters belonging to a ShardedModelV2 instance.
|
|
||||||
The sharded param of model_params can resident on both CPU and CUDA(fused adam).
|
|
||||||
"""
|
|
||||||
|
|
||||||
default_args = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, bias_correction=bias_correction)
|
default_args = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, bias_correction=bias_correction)
|
||||||
super(HybridAdam, self).__init__(model_params, default_args)
|
super(HybridAdam, self).__init__(model_params, default_args)
|
||||||
|
|
|
@ -0,0 +1,5 @@
|
||||||
|
colossalai.nn.optimizer.hybrid\_adam
|
||||||
|
====================================
|
||||||
|
|
||||||
|
.. automodule:: colossalai.nn.optimizer.hybrid_adam
|
||||||
|
:members:
|
|
@ -13,5 +13,6 @@ colossalai.nn.optimizer
|
||||||
colossalai.nn.optimizer.fused_adam
|
colossalai.nn.optimizer.fused_adam
|
||||||
colossalai.nn.optimizer.fused_lamb
|
colossalai.nn.optimizer.fused_lamb
|
||||||
colossalai.nn.optimizer.fused_sgd
|
colossalai.nn.optimizer.fused_sgd
|
||||||
|
colossalai.nn.optimizer.hybrid_adam
|
||||||
colossalai.nn.optimizer.lamb
|
colossalai.nn.optimizer.lamb
|
||||||
colossalai.nn.optimizer.lars
|
colossalai.nn.optimizer.lars
|
||||||
|
|
Loading…
Reference in New Issue