mirror of https://github.com/hpcaitech/ColossalAI
add autotune (#4822)
parent
822051d888
commit
c3bef20478
|
@ -0,0 +1,176 @@
|
|||
# code from AutoGPTQ auto_gptq: https://github.com/PanQiWei/AutoGPTQ/blob/main/auto_gptq/nn_modules/triton_utils/custom_autotune.py
|
||||
|
||||
import builtins
|
||||
import math
|
||||
import time
|
||||
from typing import Dict
|
||||
|
||||
import triton
|
||||
|
||||
|
||||
class CustomizedTritonAutoTuner(triton.KernelInterface):
|
||||
def __init__(
|
||||
self,
|
||||
fn,
|
||||
arg_names,
|
||||
configs,
|
||||
key,
|
||||
reset_to_zero,
|
||||
prune_configs_by: Dict = None,
|
||||
nearest_power_of_two: bool = False,
|
||||
):
|
||||
if not configs:
|
||||
self.configs = [triton.Config({}, num_warps=4, num_stages=2)]
|
||||
else:
|
||||
self.configs = configs
|
||||
self.key_idx = [arg_names.index(k) for k in key]
|
||||
self.nearest_power_of_two = nearest_power_of_two
|
||||
self.cache = {}
|
||||
# hook to reset all required tensor to zeros before relaunching a kernel
|
||||
self.hook = lambda args: 0
|
||||
if reset_to_zero is not None:
|
||||
self.reset_idx = [arg_names.index(k) for k in reset_to_zero]
|
||||
|
||||
def _hook(args):
|
||||
for i in self.reset_idx:
|
||||
args[i].zero_()
|
||||
|
||||
self.hook = _hook
|
||||
self.arg_names = arg_names
|
||||
# prune configs
|
||||
if prune_configs_by:
|
||||
perf_model, top_k = prune_configs_by["perf_model"], prune_configs_by["top_k"]
|
||||
if "early_config_prune" in prune_configs_by:
|
||||
early_config_prune = prune_configs_by["early_config_prune"]
|
||||
else:
|
||||
perf_model, top_k, early_config_prune = None, None, None
|
||||
self.perf_model, self.configs_top_k = perf_model, top_k
|
||||
self.early_config_prune = early_config_prune
|
||||
self.fn = fn
|
||||
|
||||
def _bench(self, *args, config, **meta):
|
||||
# check for conflicts, i.e. meta-parameters both provided
|
||||
# as kwargs and by the autotuner
|
||||
conflicts = meta.keys() & config.kwargs.keys()
|
||||
if conflicts:
|
||||
raise ValueError(
|
||||
f"Conflicting meta-parameters: {', '.join(conflicts)}."
|
||||
" Make sure that you don't re-define auto-tuned symbols."
|
||||
)
|
||||
# augment meta-parameters with tunable ones
|
||||
current = dict(meta, **config.kwargs)
|
||||
|
||||
def kernel_call():
|
||||
if config.pre_hook:
|
||||
config.pre_hook(self.nargs)
|
||||
self.hook(args)
|
||||
self.fn.run(*args, num_warps=config.num_warps, num_stages=config.num_stages, **current)
|
||||
|
||||
try:
|
||||
# In testings using only 40 reps seems to be close enough and it appears to be what PyTorch uses
|
||||
# PyTorch also sets fast_flush to True, but I didn't see any speedup so I'll leave the default
|
||||
return triton.testing.do_bench(kernel_call, percentiles=(0.5, 0.2, 0.8), rep=40)
|
||||
except triton.compiler.OutOfResources:
|
||||
return (float("inf"), float("inf"), float("inf"))
|
||||
|
||||
def run(self, *args, **kwargs):
|
||||
self.nargs = dict(zip(self.arg_names, args))
|
||||
if len(self.configs) > 1:
|
||||
key = tuple(args[i] for i in self.key_idx)
|
||||
|
||||
# This reduces the amount of autotuning by rounding the keys to the nearest power of two
|
||||
# In my testing this gives decent results, and greatly reduces the amount of tuning required
|
||||
if self.nearest_power_of_two:
|
||||
key = tuple([2 ** int(math.log2(x) + 0.5) for x in key])
|
||||
|
||||
if key not in self.cache:
|
||||
# prune configs
|
||||
pruned_configs = self.prune_configs(kwargs)
|
||||
bench_start = time.time()
|
||||
timings = {config: self._bench(*args, config=config, **kwargs) for config in pruned_configs}
|
||||
bench_end = time.time()
|
||||
self.bench_time = bench_end - bench_start
|
||||
self.cache[key] = builtins.min(timings, key=timings.get)
|
||||
self.hook(args)
|
||||
self.configs_timings = timings
|
||||
config = self.cache[key]
|
||||
else:
|
||||
config = self.configs[0]
|
||||
self.best_config = config
|
||||
if config.pre_hook is not None:
|
||||
config.pre_hook(self.nargs)
|
||||
return self.fn.run(*args, num_warps=config.num_warps, num_stages=config.num_stages, **kwargs, **config.kwargs)
|
||||
|
||||
def prune_configs(self, kwargs):
|
||||
pruned_configs = self.configs
|
||||
if self.early_config_prune:
|
||||
pruned_configs = self.early_config_prune(self.configs, self.nargs)
|
||||
if self.perf_model:
|
||||
top_k = self.configs_top_k
|
||||
if isinstance(top_k, float) and top_k <= 1.0:
|
||||
top_k = int(len(self.configs) * top_k)
|
||||
if len(pruned_configs) > top_k:
|
||||
est_timing = {
|
||||
config: self.perf_model(
|
||||
**self.nargs,
|
||||
**kwargs,
|
||||
**config.kwargs,
|
||||
num_stages=config.num_stages,
|
||||
num_warps=config.num_warps,
|
||||
)
|
||||
for config in pruned_configs
|
||||
}
|
||||
pruned_configs = sorted(est_timing.keys(), key=lambda x: est_timing[x])[:top_k]
|
||||
return pruned_configs
|
||||
|
||||
def warmup(self, *args, **kwargs):
|
||||
self.nargs = dict(zip(self.arg_names, args))
|
||||
for config in self.prune_configs(kwargs):
|
||||
self.fn.warmup(
|
||||
*args,
|
||||
num_warps=config.num_warps,
|
||||
num_stages=config.num_stages,
|
||||
**kwargs,
|
||||
**config.kwargs,
|
||||
)
|
||||
self.nargs = None
|
||||
|
||||
|
||||
def autotune(configs, key, prune_configs_by=None, reset_to_zero=None, nearest_power_of_two=False):
|
||||
def decorator(fn):
|
||||
return CustomizedTritonAutoTuner(
|
||||
fn, fn.arg_names, configs, key, reset_to_zero, prune_configs_by, nearest_power_of_two
|
||||
)
|
||||
|
||||
return decorator
|
||||
|
||||
|
||||
def matmul248_kernel_config_pruner(configs, nargs):
|
||||
"""
|
||||
The main purpose of this function is to shrink BLOCK_SIZE_* when the corresponding dimension is smaller.
|
||||
"""
|
||||
m = max(2 ** int(math.ceil(math.log2(nargs["M"]))), 16)
|
||||
n = max(2 ** int(math.ceil(math.log2(nargs["N"]))), 16)
|
||||
k = max(2 ** int(math.ceil(math.log2(nargs["K"]))), 16)
|
||||
|
||||
used = set()
|
||||
for config in configs:
|
||||
block_size_m = min(m, config.kwargs["BLOCK_SIZE_M"])
|
||||
block_size_n = min(n, config.kwargs["BLOCK_SIZE_N"])
|
||||
block_size_k = min(k, config.kwargs["BLOCK_SIZE_K"])
|
||||
group_size_m = config.kwargs["GROUP_SIZE_M"]
|
||||
|
||||
if (block_size_m, block_size_n, block_size_k, group_size_m, config.num_stages, config.num_warps) in used:
|
||||
continue
|
||||
|
||||
used.add((block_size_m, block_size_n, block_size_k, group_size_m, config.num_stages, config.num_warps))
|
||||
yield triton.Config(
|
||||
{
|
||||
"BLOCK_SIZE_M": block_size_m,
|
||||
"BLOCK_SIZE_N": block_size_n,
|
||||
"BLOCK_SIZE_K": block_size_k,
|
||||
"GROUP_SIZE_M": group_size_m,
|
||||
},
|
||||
num_stages=config.num_stages,
|
||||
num_warps=config.num_warps,
|
||||
)
|
|
@ -3,7 +3,8 @@
|
|||
import torch
|
||||
import triton
|
||||
import triton.language as tl
|
||||
from auto_gptq.nn_modules.triton_utils import custom_autotune
|
||||
|
||||
from .custom_autotune import autotune, matmul248_kernel_config_pruner
|
||||
|
||||
|
||||
@triton.jit
|
||||
|
@ -94,7 +95,7 @@ def silu(x):
|
|||
return x * tl.sigmoid(x)
|
||||
|
||||
|
||||
@custom_autotune.autotune(
|
||||
@autotune(
|
||||
configs=[
|
||||
triton.Config(
|
||||
{"BLOCK_SIZE_M": 64, "BLOCK_SIZE_N": 256, "BLOCK_SIZE_K": 32, "GROUP_SIZE_M": 8}, num_stages=4, num_warps=4
|
||||
|
@ -124,7 +125,7 @@ def silu(x):
|
|||
key=["M", "N", "K"],
|
||||
nearest_power_of_two=True,
|
||||
prune_configs_by={
|
||||
"early_config_prune": custom_autotune.matmul248_kernel_config_pruner,
|
||||
"early_config_prune": matmul248_kernel_config_pruner,
|
||||
"perf_model": None,
|
||||
"top_k": None,
|
||||
},
|
||||
|
@ -266,7 +267,7 @@ def cai_gptq_matmul_248_kernel(
|
|||
tl.store(c_ptrs, accumulator, mask=c_mask)
|
||||
|
||||
|
||||
@custom_autotune.autotune(
|
||||
@autotune(
|
||||
configs=[
|
||||
triton.Config(
|
||||
{"BLOCK_SIZE_M": 64, "BLOCK_SIZE_N": 256, "BLOCK_SIZE_K": 32, "GROUP_SIZE_M": 8}, num_stages=4, num_warps=4
|
||||
|
@ -296,7 +297,7 @@ def cai_gptq_matmul_248_kernel(
|
|||
key=["M", "N", "K"],
|
||||
nearest_power_of_two=True,
|
||||
prune_configs_by={
|
||||
"early_config_prune": custom_autotune.matmul248_kernel_config_pruner,
|
||||
"early_config_prune": matmul248_kernel_config_pruner,
|
||||
"perf_model": None,
|
||||
"top_k": None,
|
||||
},
|
||||
|
|
Loading…
Reference in New Issue