mirror of https://github.com/hpcaitech/ColossalAI
[inference] streaming Linear 1D Row inference (#1874)
parent
a141681260
commit
c2947dadf1
|
@ -597,9 +597,12 @@ class Linear1D_Row(ParallelLayer):
|
||||||
parallel_input: bool = True,
|
parallel_input: bool = True,
|
||||||
skip_bias_add: bool = False,
|
skip_bias_add: bool = False,
|
||||||
weight_initializer: Callable = init.kaiming_uniform_(a=math.sqrt(5)),
|
weight_initializer: Callable = init.kaiming_uniform_(a=math.sqrt(5)),
|
||||||
bias_initializer: Callable = init.xavier_uniform_(a=1, scale=1)):
|
bias_initializer: Callable = init.xavier_uniform_(a=1, scale=1),
|
||||||
|
stream_chunk_num: int = 1):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
|
|
||||||
|
self.stream_chunk_num = stream_chunk_num
|
||||||
|
|
||||||
# Keep input parameters
|
# Keep input parameters
|
||||||
self.in_features = in_features
|
self.in_features = in_features
|
||||||
self.out_features = out_features
|
self.out_features = out_features
|
||||||
|
@ -617,6 +620,9 @@ class Linear1D_Row(ParallelLayer):
|
||||||
factory_kwargs = {'device': get_current_device(), 'dtype': dtype}
|
factory_kwargs = {'device': get_current_device(), 'dtype': dtype}
|
||||||
self.weight = Parameter(torch.empty(self.out_features, self.input_size_per_partition, **factory_kwargs))
|
self.weight = Parameter(torch.empty(self.out_features, self.input_size_per_partition, **factory_kwargs))
|
||||||
|
|
||||||
|
if self.stream_chunk_num > 1:
|
||||||
|
# TODO() work for inference only
|
||||||
|
self.chunk_weight()
|
||||||
if bias:
|
if bias:
|
||||||
self.bias = Parameter(torch.empty(self.out_features, **factory_kwargs))
|
self.bias = Parameter(torch.empty(self.out_features, **factory_kwargs))
|
||||||
else:
|
else:
|
||||||
|
@ -626,6 +632,9 @@ class Linear1D_Row(ParallelLayer):
|
||||||
self._set_tensor_parallel_attributes()
|
self._set_tensor_parallel_attributes()
|
||||||
set_parallel_input(False)
|
set_parallel_input(False)
|
||||||
|
|
||||||
|
def chunk_weight(self):
|
||||||
|
self.weight_list = torch.chunk(self.weight, self.stream_chunk_num, dim=0)
|
||||||
|
|
||||||
def reset_parameters(self, weight_initializer, bias_initializer) -> None:
|
def reset_parameters(self, weight_initializer, bias_initializer) -> None:
|
||||||
fan_in, fan_out = self.in_features, self.out_features
|
fan_in, fan_out = self.in_features, self.out_features
|
||||||
weight_initializer(self.weight, fan_in=fan_in, fan_out=fan_out)
|
weight_initializer(self.weight, fan_in=fan_in, fan_out=fan_out)
|
||||||
|
@ -696,10 +705,17 @@ class Linear1D_Row(ParallelLayer):
|
||||||
input_.shape, self.weight.shape, self.weight.shape[-1] * gpc.tensor_parallel_size)
|
input_.shape, self.weight.shape, self.weight.shape[-1] * gpc.tensor_parallel_size)
|
||||||
input_ = split_forward_gather_backward(input_, ParallelMode.PARALLEL_1D, dim=-1)
|
input_ = split_forward_gather_backward(input_, ParallelMode.PARALLEL_1D, dim=-1)
|
||||||
|
|
||||||
output_parallel = F.linear(input_, self.weight)
|
if self.stream_chunk_num > 1:
|
||||||
# output_parallel = linear_with_async_comm(input_, self.weight, None, ParallelMode.PARALLEL_1D, False)
|
output_parallel_list = [None for i in range(self.stream_chunk_num)]
|
||||||
output = reduce_input(output_parallel, ParallelMode.PARALLEL_1D)
|
for i in range(self.stream_chunk_num):
|
||||||
|
output_parallel_list[i] = F.linear(input_, self.weight_list[i])
|
||||||
|
output_parallel_list[i] = reduce_input(output_parallel_list[i], ParallelMode.PARALLEL_1D)
|
||||||
|
output = torch.cat(output_parallel_list, dim=-1)
|
||||||
|
else:
|
||||||
|
print(input_.shape, self.weight.shape)
|
||||||
|
output_parallel = F.linear(input_, self.weight)
|
||||||
|
# output_parallel = linear_with_async_comm(input_, self.weight, None, ParallelMode.PARALLEL_1D, False)
|
||||||
|
output = reduce_input(output_parallel, ParallelMode.PARALLEL_1D)
|
||||||
if not self.skip_bias_add:
|
if not self.skip_bias_add:
|
||||||
if self.bias is not None:
|
if self.bias is not None:
|
||||||
output = output + self.bias
|
output = output + self.bias
|
||||||
|
|
|
@ -32,7 +32,7 @@ class MLP(torch.nn.Module):
|
||||||
return x
|
return x
|
||||||
|
|
||||||
|
|
||||||
def run_workflow(world_size):
|
def run_workflow(world_size, dev):
|
||||||
# initailization
|
# initailization
|
||||||
with LazyInitContext() as ctx:
|
with LazyInitContext() as ctx:
|
||||||
model = MLP(16)
|
model = MLP(16)
|
||||||
|
@ -46,7 +46,7 @@ def run_workflow(world_size):
|
||||||
gm = torch.fx.GraphModule(model, graph, model.__class__.__name__)
|
gm = torch.fx.GraphModule(model, graph, model.__class__.__name__)
|
||||||
|
|
||||||
# annotate
|
# annotate
|
||||||
annotated_gm = transformer_mlp_pass(gm, process_group=ProcessGroup())
|
annotated_gm = transformer_mlp_pass(gm, process_group=ProcessGroup(tp_degree=world_size))
|
||||||
annotated_gm.recompile()
|
annotated_gm.recompile()
|
||||||
|
|
||||||
# materialization and sharding
|
# materialization and sharding
|
||||||
|
@ -61,22 +61,25 @@ def run_workflow(world_size):
|
||||||
|
|
||||||
# test forward to make sure that IR transform will produce the same results
|
# test forward to make sure that IR transform will produce the same results
|
||||||
# like how ColoTensor would do it normally
|
# like how ColoTensor would do it normally
|
||||||
data = torch.rand(4, 16)
|
data = torch.rand(4, 16, device=dev)
|
||||||
non_fx_out = model(data)
|
non_fx_out = model(data)
|
||||||
fx_out = annotated_gm(data)
|
fx_out = annotated_gm(data)
|
||||||
assert torch.equal(non_fx_out, fx_out), f'{non_fx_out} vs {fx_out}'
|
assert torch.equal(non_fx_out, fx_out), f'{non_fx_out} vs {fx_out}'
|
||||||
|
|
||||||
|
|
||||||
def run_dist(rank, world_size, port):
|
def run_dist(rank, world_size, dev, port):
|
||||||
colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||||
run_workflow(world_size)
|
run_workflow(world_size, dev)
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.dist
|
@pytest.mark.dist
|
||||||
@pytest.mark.parametrize('world_size', [1, 2])
|
@pytest.mark.parametrize('world_size', [1, 2])
|
||||||
|
@pytest.mark.parametrize('dev', ['cuda', 'cpu'])
|
||||||
@rerun_if_address_is_in_use()
|
@rerun_if_address_is_in_use()
|
||||||
def test_complete_workflow(world_size):
|
def test_complete_workflow(world_size, dev):
|
||||||
run_func = partial(run_dist, world_size=world_size, port=free_port())
|
if dev == 'cpu' and world_size > 1:
|
||||||
|
return
|
||||||
|
run_func = partial(run_dist, world_size=world_size, dev=dev, port=free_port())
|
||||||
mp.spawn(run_func, nprocs=world_size)
|
mp.spawn(run_func, nprocs=world_size)
|
||||||
|
|
||||||
|
|
||||||
|
|
File diff suppressed because it is too large
Load Diff
|
@ -1,46 +1,49 @@
|
||||||
#!/usr/bin/env python
|
#!/usr/bin/env python
|
||||||
# -*- encoding: utf-8 -*-
|
# -*- encoding: utf-8 -*-
|
||||||
|
|
||||||
from functools import partial
|
from functools import partial
|
||||||
|
|
||||||
import pytest
|
import pytest
|
||||||
import torch
|
import torch
|
||||||
import torch.multiprocessing as mp
|
import torch.multiprocessing as mp
|
||||||
from colossalai.core import global_context as gpc
|
from checks_1d.check_layer_1d import *
|
||||||
from colossalai.logging import disable_existing_loggers
|
|
||||||
from colossalai.initialize import launch
|
from colossalai.core import global_context as gpc
|
||||||
from colossalai.utils import free_port
|
from colossalai.initialize import launch
|
||||||
from colossalai.testing import rerun_if_address_is_in_use
|
from colossalai.logging import disable_existing_loggers
|
||||||
from checks_1d.check_layer_1d import *
|
from colossalai.testing import rerun_if_address_is_in_use
|
||||||
|
from colossalai.utils import free_port
|
||||||
CONFIG = dict(parallel=dict(pipeline=dict(size=1), tensor=dict(size=4, mode='1d')),)
|
|
||||||
|
CONFIG = dict(parallel=dict(pipeline=dict(size=1), tensor=dict(size=4, mode='1d')),)
|
||||||
|
|
||||||
def check_layer(rank, world_size, port):
|
|
||||||
disable_existing_loggers()
|
def check_layer(rank, world_size, port):
|
||||||
launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
disable_existing_loggers()
|
||||||
|
launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||||
check_linear_col()
|
|
||||||
check_linear_row()
|
check_linear_col()
|
||||||
check_embed()
|
check_linear_row()
|
||||||
check_vocab_parallel_embed()
|
check_embed()
|
||||||
check_classifier_no_given_weight()
|
check_vocab_parallel_embed()
|
||||||
check_vocab_parallel_classifier_no_given_weight()
|
check_classifier_no_given_weight()
|
||||||
check_classifier_given_embed_weight()
|
check_vocab_parallel_classifier_no_given_weight()
|
||||||
check_vocab_parallel_classifier_given_embed_weight()
|
check_classifier_given_embed_weight()
|
||||||
check_vocab_parallel_loss()
|
check_vocab_parallel_classifier_given_embed_weight()
|
||||||
|
check_vocab_parallel_loss()
|
||||||
gpc.destroy()
|
|
||||||
torch.cuda.empty_cache()
|
check_linear_row_stream_inference()
|
||||||
|
|
||||||
|
gpc.destroy()
|
||||||
@pytest.mark.dist
|
torch.cuda.empty_cache()
|
||||||
@rerun_if_address_is_in_use()
|
|
||||||
def test_1d():
|
|
||||||
world_size = 4
|
@pytest.mark.dist
|
||||||
run_func = partial(check_layer, world_size=world_size, port=free_port())
|
@rerun_if_address_is_in_use()
|
||||||
mp.spawn(run_func, nprocs=world_size)
|
def test_1d():
|
||||||
|
world_size = 4
|
||||||
|
run_func = partial(check_layer, world_size=world_size, port=free_port())
|
||||||
if __name__ == '__main__':
|
mp.spawn(run_func, nprocs=world_size)
|
||||||
test_1d()
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
test_1d()
|
||||||
|
|
Loading…
Reference in New Issue