[inference] streaming Linear 1D Row inference (#1874)

pull/1876/head^2
Jiarui Fang 2022-11-10 17:03:21 +08:00 committed by GitHub
parent a141681260
commit c2947dadf1
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 629 additions and 554 deletions

View File

@ -597,9 +597,12 @@ class Linear1D_Row(ParallelLayer):
parallel_input: bool = True, parallel_input: bool = True,
skip_bias_add: bool = False, skip_bias_add: bool = False,
weight_initializer: Callable = init.kaiming_uniform_(a=math.sqrt(5)), weight_initializer: Callable = init.kaiming_uniform_(a=math.sqrt(5)),
bias_initializer: Callable = init.xavier_uniform_(a=1, scale=1)): bias_initializer: Callable = init.xavier_uniform_(a=1, scale=1),
stream_chunk_num: int = 1):
super().__init__() super().__init__()
self.stream_chunk_num = stream_chunk_num
# Keep input parameters # Keep input parameters
self.in_features = in_features self.in_features = in_features
self.out_features = out_features self.out_features = out_features
@ -617,6 +620,9 @@ class Linear1D_Row(ParallelLayer):
factory_kwargs = {'device': get_current_device(), 'dtype': dtype} factory_kwargs = {'device': get_current_device(), 'dtype': dtype}
self.weight = Parameter(torch.empty(self.out_features, self.input_size_per_partition, **factory_kwargs)) self.weight = Parameter(torch.empty(self.out_features, self.input_size_per_partition, **factory_kwargs))
if self.stream_chunk_num > 1:
# TODO() work for inference only
self.chunk_weight()
if bias: if bias:
self.bias = Parameter(torch.empty(self.out_features, **factory_kwargs)) self.bias = Parameter(torch.empty(self.out_features, **factory_kwargs))
else: else:
@ -626,6 +632,9 @@ class Linear1D_Row(ParallelLayer):
self._set_tensor_parallel_attributes() self._set_tensor_parallel_attributes()
set_parallel_input(False) set_parallel_input(False)
def chunk_weight(self):
self.weight_list = torch.chunk(self.weight, self.stream_chunk_num, dim=0)
def reset_parameters(self, weight_initializer, bias_initializer) -> None: def reset_parameters(self, weight_initializer, bias_initializer) -> None:
fan_in, fan_out = self.in_features, self.out_features fan_in, fan_out = self.in_features, self.out_features
weight_initializer(self.weight, fan_in=fan_in, fan_out=fan_out) weight_initializer(self.weight, fan_in=fan_in, fan_out=fan_out)
@ -696,10 +705,17 @@ class Linear1D_Row(ParallelLayer):
input_.shape, self.weight.shape, self.weight.shape[-1] * gpc.tensor_parallel_size) input_.shape, self.weight.shape, self.weight.shape[-1] * gpc.tensor_parallel_size)
input_ = split_forward_gather_backward(input_, ParallelMode.PARALLEL_1D, dim=-1) input_ = split_forward_gather_backward(input_, ParallelMode.PARALLEL_1D, dim=-1)
output_parallel = F.linear(input_, self.weight) if self.stream_chunk_num > 1:
# output_parallel = linear_with_async_comm(input_, self.weight, None, ParallelMode.PARALLEL_1D, False) output_parallel_list = [None for i in range(self.stream_chunk_num)]
output = reduce_input(output_parallel, ParallelMode.PARALLEL_1D) for i in range(self.stream_chunk_num):
output_parallel_list[i] = F.linear(input_, self.weight_list[i])
output_parallel_list[i] = reduce_input(output_parallel_list[i], ParallelMode.PARALLEL_1D)
output = torch.cat(output_parallel_list, dim=-1)
else:
print(input_.shape, self.weight.shape)
output_parallel = F.linear(input_, self.weight)
# output_parallel = linear_with_async_comm(input_, self.weight, None, ParallelMode.PARALLEL_1D, False)
output = reduce_input(output_parallel, ParallelMode.PARALLEL_1D)
if not self.skip_bias_add: if not self.skip_bias_add:
if self.bias is not None: if self.bias is not None:
output = output + self.bias output = output + self.bias

View File

@ -32,7 +32,7 @@ class MLP(torch.nn.Module):
return x return x
def run_workflow(world_size): def run_workflow(world_size, dev):
# initailization # initailization
with LazyInitContext() as ctx: with LazyInitContext() as ctx:
model = MLP(16) model = MLP(16)
@ -46,7 +46,7 @@ def run_workflow(world_size):
gm = torch.fx.GraphModule(model, graph, model.__class__.__name__) gm = torch.fx.GraphModule(model, graph, model.__class__.__name__)
# annotate # annotate
annotated_gm = transformer_mlp_pass(gm, process_group=ProcessGroup()) annotated_gm = transformer_mlp_pass(gm, process_group=ProcessGroup(tp_degree=world_size))
annotated_gm.recompile() annotated_gm.recompile()
# materialization and sharding # materialization and sharding
@ -61,22 +61,25 @@ def run_workflow(world_size):
# test forward to make sure that IR transform will produce the same results # test forward to make sure that IR transform will produce the same results
# like how ColoTensor would do it normally # like how ColoTensor would do it normally
data = torch.rand(4, 16) data = torch.rand(4, 16, device=dev)
non_fx_out = model(data) non_fx_out = model(data)
fx_out = annotated_gm(data) fx_out = annotated_gm(data)
assert torch.equal(non_fx_out, fx_out), f'{non_fx_out} vs {fx_out}' assert torch.equal(non_fx_out, fx_out), f'{non_fx_out} vs {fx_out}'
def run_dist(rank, world_size, port): def run_dist(rank, world_size, dev, port):
colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
run_workflow(world_size) run_workflow(world_size, dev)
@pytest.mark.dist @pytest.mark.dist
@pytest.mark.parametrize('world_size', [1, 2]) @pytest.mark.parametrize('world_size', [1, 2])
@pytest.mark.parametrize('dev', ['cuda', 'cpu'])
@rerun_if_address_is_in_use() @rerun_if_address_is_in_use()
def test_complete_workflow(world_size): def test_complete_workflow(world_size, dev):
run_func = partial(run_dist, world_size=world_size, port=free_port()) if dev == 'cpu' and world_size > 1:
return
run_func = partial(run_dist, world_size=world_size, dev=dev, port=free_port())
mp.spawn(run_func, nprocs=world_size) mp.spawn(run_func, nprocs=world_size)

File diff suppressed because it is too large Load Diff

View File

@ -1,46 +1,49 @@
#!/usr/bin/env python #!/usr/bin/env python
# -*- encoding: utf-8 -*- # -*- encoding: utf-8 -*-
from functools import partial from functools import partial
import pytest import pytest
import torch import torch
import torch.multiprocessing as mp import torch.multiprocessing as mp
from colossalai.core import global_context as gpc from checks_1d.check_layer_1d import *
from colossalai.logging import disable_existing_loggers
from colossalai.initialize import launch from colossalai.core import global_context as gpc
from colossalai.utils import free_port from colossalai.initialize import launch
from colossalai.testing import rerun_if_address_is_in_use from colossalai.logging import disable_existing_loggers
from checks_1d.check_layer_1d import * from colossalai.testing import rerun_if_address_is_in_use
from colossalai.utils import free_port
CONFIG = dict(parallel=dict(pipeline=dict(size=1), tensor=dict(size=4, mode='1d')),)
CONFIG = dict(parallel=dict(pipeline=dict(size=1), tensor=dict(size=4, mode='1d')),)
def check_layer(rank, world_size, port):
disable_existing_loggers() def check_layer(rank, world_size, port):
launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') disable_existing_loggers()
launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
check_linear_col()
check_linear_row() check_linear_col()
check_embed() check_linear_row()
check_vocab_parallel_embed() check_embed()
check_classifier_no_given_weight() check_vocab_parallel_embed()
check_vocab_parallel_classifier_no_given_weight() check_classifier_no_given_weight()
check_classifier_given_embed_weight() check_vocab_parallel_classifier_no_given_weight()
check_vocab_parallel_classifier_given_embed_weight() check_classifier_given_embed_weight()
check_vocab_parallel_loss() check_vocab_parallel_classifier_given_embed_weight()
check_vocab_parallel_loss()
gpc.destroy()
torch.cuda.empty_cache() check_linear_row_stream_inference()
gpc.destroy()
@pytest.mark.dist torch.cuda.empty_cache()
@rerun_if_address_is_in_use()
def test_1d():
world_size = 4 @pytest.mark.dist
run_func = partial(check_layer, world_size=world_size, port=free_port()) @rerun_if_address_is_in_use()
mp.spawn(run_func, nprocs=world_size) def test_1d():
world_size = 4
run_func = partial(check_layer, world_size=world_size, port=free_port())
if __name__ == '__main__': mp.spawn(run_func, nprocs=world_size)
test_1d()
if __name__ == '__main__':
test_1d()