mirror of https://github.com/hpcaitech/ColossalAI
[inference] streaming Linear 1D Row inference (#1874)
parent
a141681260
commit
c2947dadf1
|
@ -597,9 +597,12 @@ class Linear1D_Row(ParallelLayer):
|
|||
parallel_input: bool = True,
|
||||
skip_bias_add: bool = False,
|
||||
weight_initializer: Callable = init.kaiming_uniform_(a=math.sqrt(5)),
|
||||
bias_initializer: Callable = init.xavier_uniform_(a=1, scale=1)):
|
||||
bias_initializer: Callable = init.xavier_uniform_(a=1, scale=1),
|
||||
stream_chunk_num: int = 1):
|
||||
super().__init__()
|
||||
|
||||
self.stream_chunk_num = stream_chunk_num
|
||||
|
||||
# Keep input parameters
|
||||
self.in_features = in_features
|
||||
self.out_features = out_features
|
||||
|
@ -617,6 +620,9 @@ class Linear1D_Row(ParallelLayer):
|
|||
factory_kwargs = {'device': get_current_device(), 'dtype': dtype}
|
||||
self.weight = Parameter(torch.empty(self.out_features, self.input_size_per_partition, **factory_kwargs))
|
||||
|
||||
if self.stream_chunk_num > 1:
|
||||
# TODO() work for inference only
|
||||
self.chunk_weight()
|
||||
if bias:
|
||||
self.bias = Parameter(torch.empty(self.out_features, **factory_kwargs))
|
||||
else:
|
||||
|
@ -626,6 +632,9 @@ class Linear1D_Row(ParallelLayer):
|
|||
self._set_tensor_parallel_attributes()
|
||||
set_parallel_input(False)
|
||||
|
||||
def chunk_weight(self):
|
||||
self.weight_list = torch.chunk(self.weight, self.stream_chunk_num, dim=0)
|
||||
|
||||
def reset_parameters(self, weight_initializer, bias_initializer) -> None:
|
||||
fan_in, fan_out = self.in_features, self.out_features
|
||||
weight_initializer(self.weight, fan_in=fan_in, fan_out=fan_out)
|
||||
|
@ -696,10 +705,17 @@ class Linear1D_Row(ParallelLayer):
|
|||
input_.shape, self.weight.shape, self.weight.shape[-1] * gpc.tensor_parallel_size)
|
||||
input_ = split_forward_gather_backward(input_, ParallelMode.PARALLEL_1D, dim=-1)
|
||||
|
||||
output_parallel = F.linear(input_, self.weight)
|
||||
# output_parallel = linear_with_async_comm(input_, self.weight, None, ParallelMode.PARALLEL_1D, False)
|
||||
output = reduce_input(output_parallel, ParallelMode.PARALLEL_1D)
|
||||
|
||||
if self.stream_chunk_num > 1:
|
||||
output_parallel_list = [None for i in range(self.stream_chunk_num)]
|
||||
for i in range(self.stream_chunk_num):
|
||||
output_parallel_list[i] = F.linear(input_, self.weight_list[i])
|
||||
output_parallel_list[i] = reduce_input(output_parallel_list[i], ParallelMode.PARALLEL_1D)
|
||||
output = torch.cat(output_parallel_list, dim=-1)
|
||||
else:
|
||||
print(input_.shape, self.weight.shape)
|
||||
output_parallel = F.linear(input_, self.weight)
|
||||
# output_parallel = linear_with_async_comm(input_, self.weight, None, ParallelMode.PARALLEL_1D, False)
|
||||
output = reduce_input(output_parallel, ParallelMode.PARALLEL_1D)
|
||||
if not self.skip_bias_add:
|
||||
if self.bias is not None:
|
||||
output = output + self.bias
|
||||
|
|
|
@ -32,7 +32,7 @@ class MLP(torch.nn.Module):
|
|||
return x
|
||||
|
||||
|
||||
def run_workflow(world_size):
|
||||
def run_workflow(world_size, dev):
|
||||
# initailization
|
||||
with LazyInitContext() as ctx:
|
||||
model = MLP(16)
|
||||
|
@ -46,7 +46,7 @@ def run_workflow(world_size):
|
|||
gm = torch.fx.GraphModule(model, graph, model.__class__.__name__)
|
||||
|
||||
# annotate
|
||||
annotated_gm = transformer_mlp_pass(gm, process_group=ProcessGroup())
|
||||
annotated_gm = transformer_mlp_pass(gm, process_group=ProcessGroup(tp_degree=world_size))
|
||||
annotated_gm.recompile()
|
||||
|
||||
# materialization and sharding
|
||||
|
@ -61,22 +61,25 @@ def run_workflow(world_size):
|
|||
|
||||
# test forward to make sure that IR transform will produce the same results
|
||||
# like how ColoTensor would do it normally
|
||||
data = torch.rand(4, 16)
|
||||
data = torch.rand(4, 16, device=dev)
|
||||
non_fx_out = model(data)
|
||||
fx_out = annotated_gm(data)
|
||||
assert torch.equal(non_fx_out, fx_out), f'{non_fx_out} vs {fx_out}'
|
||||
|
||||
|
||||
def run_dist(rank, world_size, port):
|
||||
def run_dist(rank, world_size, dev, port):
|
||||
colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||
run_workflow(world_size)
|
||||
run_workflow(world_size, dev)
|
||||
|
||||
|
||||
@pytest.mark.dist
|
||||
@pytest.mark.parametrize('world_size', [1, 2])
|
||||
@pytest.mark.parametrize('dev', ['cuda', 'cpu'])
|
||||
@rerun_if_address_is_in_use()
|
||||
def test_complete_workflow(world_size):
|
||||
run_func = partial(run_dist, world_size=world_size, port=free_port())
|
||||
def test_complete_workflow(world_size, dev):
|
||||
if dev == 'cpu' and world_size > 1:
|
||||
return
|
||||
run_func = partial(run_dist, world_size=world_size, dev=dev, port=free_port())
|
||||
mp.spawn(run_func, nprocs=world_size)
|
||||
|
||||
|
||||
|
|
File diff suppressed because it is too large
Load Diff
|
@ -1,46 +1,49 @@
|
|||
#!/usr/bin/env python
|
||||
# -*- encoding: utf-8 -*-
|
||||
|
||||
from functools import partial
|
||||
|
||||
import pytest
|
||||
import torch
|
||||
import torch.multiprocessing as mp
|
||||
from colossalai.core import global_context as gpc
|
||||
from colossalai.logging import disable_existing_loggers
|
||||
from colossalai.initialize import launch
|
||||
from colossalai.utils import free_port
|
||||
from colossalai.testing import rerun_if_address_is_in_use
|
||||
from checks_1d.check_layer_1d import *
|
||||
|
||||
CONFIG = dict(parallel=dict(pipeline=dict(size=1), tensor=dict(size=4, mode='1d')),)
|
||||
|
||||
|
||||
def check_layer(rank, world_size, port):
|
||||
disable_existing_loggers()
|
||||
launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||
|
||||
check_linear_col()
|
||||
check_linear_row()
|
||||
check_embed()
|
||||
check_vocab_parallel_embed()
|
||||
check_classifier_no_given_weight()
|
||||
check_vocab_parallel_classifier_no_given_weight()
|
||||
check_classifier_given_embed_weight()
|
||||
check_vocab_parallel_classifier_given_embed_weight()
|
||||
check_vocab_parallel_loss()
|
||||
|
||||
gpc.destroy()
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
|
||||
@pytest.mark.dist
|
||||
@rerun_if_address_is_in_use()
|
||||
def test_1d():
|
||||
world_size = 4
|
||||
run_func = partial(check_layer, world_size=world_size, port=free_port())
|
||||
mp.spawn(run_func, nprocs=world_size)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_1d()
|
||||
#!/usr/bin/env python
|
||||
# -*- encoding: utf-8 -*-
|
||||
|
||||
from functools import partial
|
||||
|
||||
import pytest
|
||||
import torch
|
||||
import torch.multiprocessing as mp
|
||||
from checks_1d.check_layer_1d import *
|
||||
|
||||
from colossalai.core import global_context as gpc
|
||||
from colossalai.initialize import launch
|
||||
from colossalai.logging import disable_existing_loggers
|
||||
from colossalai.testing import rerun_if_address_is_in_use
|
||||
from colossalai.utils import free_port
|
||||
|
||||
CONFIG = dict(parallel=dict(pipeline=dict(size=1), tensor=dict(size=4, mode='1d')),)
|
||||
|
||||
|
||||
def check_layer(rank, world_size, port):
|
||||
disable_existing_loggers()
|
||||
launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||
|
||||
check_linear_col()
|
||||
check_linear_row()
|
||||
check_embed()
|
||||
check_vocab_parallel_embed()
|
||||
check_classifier_no_given_weight()
|
||||
check_vocab_parallel_classifier_no_given_weight()
|
||||
check_classifier_given_embed_weight()
|
||||
check_vocab_parallel_classifier_given_embed_weight()
|
||||
check_vocab_parallel_loss()
|
||||
|
||||
check_linear_row_stream_inference()
|
||||
|
||||
gpc.destroy()
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
|
||||
@pytest.mark.dist
|
||||
@rerun_if_address_is_in_use()
|
||||
def test_1d():
|
||||
world_size = 4
|
||||
run_func = partial(check_layer, world_size=world_size, port=free_port())
|
||||
mp.spawn(run_func, nprocs=world_size)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_1d()
|
||||
|
|
Loading…
Reference in New Issue