[Inference]refactor baichuan (#5791)

* refactor baichuan

* remove unused code and add TODO for lazyinit
pull/5793/head
Runyu Lu 2024-06-11 10:52:01 +08:00 committed by GitHub
parent 77a219a082
commit c0948aff97
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
3 changed files with 24 additions and 110 deletions

View File

@ -15,25 +15,10 @@ class BaichuanLMHeadLinear1D_Col(Linear1D_Col):
module.in_features = module.weight.size(1)
module.out_features = module.weight.size(0)
module.bias = None
module.weight.data = nn.functional.normalize(module.weight)
return Linear1D_Col.from_native_module(
module,
process_group,
*args,
**kwargs,
)
class BaichuanWpackLinear1D_Col(Linear1D_Col):
@staticmethod
def from_native_module(
module: nn.Module, process_group: Union[ProcessGroup, List[ProcessGroup]], *args, **kwargs
) -> ParallelModule:
in_features = module.in_features * 3
out_features = module.out_features // 3
module.weight.data = module.weight.view(3, out_features, -1).transpose(0, 1).reshape(out_features, in_features)
module.bias = None
module.weight.data = nn.functional.normalize(
module.weight
) # TODO(lry89757) This behavior may not apply to lazy init. When we use lazy init, the weight of shardformer is not the real weight.
# So we should rewrite our own load_from_state_dict of `BaichuanLMHeadLinear1D_Col` to fix this potential issue.
return Linear1D_Col.from_native_module(
module,

View File

@ -1,11 +1,11 @@
# This code is adapted from huggingface baichuan model: hhttps://huggingface.co/baichuan-inc/Baichuan2-13B-Base/blob/main/modeling_baichuan.py
import itertools
from typing import List, Optional, Tuple, Union
import torch
import torch.nn as nn
from torch.distributed import ProcessGroup
from colossalai.accelerator import get_accelerator
from colossalai.inference.config import ModelShardInferenceConfig
from colossalai.inference.flash_decoding_utils import FDIntermTensors
from colossalai.inference.modeling.backends.attention_backend import AttentionMetaData, get_attention_backend
@ -16,7 +16,7 @@ from colossalai.kernel.kernel_loader import InferenceOpsLoader
from colossalai.kernel.triton import rms_layernorm
from colossalai.logging import get_dist_logger
from colossalai.shardformer.layer.parallel_module import ParallelModule
from colossalai.tensor.d_tensor import Layout, distribute_tensor, is_distributed_tensor
from colossalai.tensor.d_tensor import is_distributed_tensor
inference_ops = InferenceOpsLoader().load()
logger = get_dist_logger(__name__)
@ -55,24 +55,19 @@ class NopadBaichuanAttention(ParallelModule):
def __init__(
self,
config,
attn_qproj_w: torch.Tensor = None,
attn_kproj_w: torch.Tensor = None,
attn_vproj_w: torch.Tensor = None,
W_pack: ParallelModule = None,
attn_oproj: ParallelModule = None,
num_heads: int = None,
hidden_size: int = None,
model_shard_infer_config: ModelShardInferenceConfig = None,
process_group: ProcessGroup = None,
helper_layout: Layout = None,
):
"""This layer will replace the BaichuanAttention.
Args:
config (BaichuanConfig): Holding the Baichuan model config.
attn_qproj_w (torch.Tensor, optional): The transposed q_proj weight. Defaults to None.
attn_kproj_w (torch.Tensor, optional): The transposed k_proj weight. Defaults to None.
attn_vproj_w (torch.Tensor, optional): The transposed v_proj weight. Defaults to None.
attn_oproj (Linear1D_Row, optional): The Linear1D_Row o_proj weight. Defaults to None.
W_pack (ParallelModule, optional): The packed weight. Defaults to None.
attn_oproj (Linear1D_Row, optional): The Linear1D_Row o_proj. Defaults to None.
"""
ParallelModule.__init__(self)
self.o_proj = attn_oproj
@ -82,10 +77,7 @@ class NopadBaichuanAttention(ParallelModule):
self.hidden_size = hidden_size
self.head_dim = self.hidden_size // self.num_heads
self.process_group = process_group
qkv_weight_list = [attn_qproj_w.transpose(0, 1), attn_kproj_w.transpose(0, 1), attn_vproj_w.transpose(0, 1)]
self.qkv_weight = nn.Parameter(torch.stack(qkv_weight_list, dim=0))
self.helper_layout = helper_layout
self.W_pack = W_pack
self.use_cuda_kernel = model_shard_infer_config.use_cuda_kernel
self.attention_backend = get_attention_backend(model_shard_infer_config)
self.pre_attention_backend = get_pre_attention_backend(model_shard_infer_config)
@ -96,9 +88,9 @@ class NopadBaichuanAttention(ParallelModule):
if config.hidden_size == 5120:
slopes_start = self.process_group.rank() * num_heads
self.use_alibi_attn = True
self.alibi_slopes = get_alibi_slopes(config.num_attention_heads, device=attn_qproj_w.device)[
slopes_start : slopes_start + num_heads
].contiguous()
self.alibi_slopes = get_alibi_slopes(
config.num_attention_heads, device=get_accelerator().get_current_device()
)[slopes_start : slopes_start + num_heads].contiguous()
self.alibi_slopes = nn.Parameter(self.alibi_slopes)
@staticmethod
@ -112,78 +104,22 @@ class NopadBaichuanAttention(ParallelModule):
"""
config = module.config
q_proj_w, k_proj_w, v_proj_w = module.W_pack.weight.view((module.hidden_size, 3, -1)).transpose(0, 1)
attn_qproj_w = q_proj_w
attn_kproj_w = k_proj_w
attn_vproj_w = v_proj_w
W_pack = module.W_pack
attn_oproj = module.o_proj
model_shard_infer_config = kwargs.get("model_shard_infer_config", None)
helper_layout = (
module.W_pack.weight.dist_layout
) # NOTE this is a hack for the right load/shard of qkv_weight(used in _load_from_state_dict)
attn_layer = NopadBaichuanAttention(
config=config,
attn_qproj_w=attn_qproj_w,
attn_kproj_w=attn_kproj_w,
attn_vproj_w=attn_vproj_w,
W_pack=W_pack,
attn_oproj=attn_oproj,
model_shard_infer_config=model_shard_infer_config,
num_heads=module.num_heads,
hidden_size=module.hidden_size,
process_group=process_group,
helper_layout=helper_layout,
)
return attn_layer
def _load_from_state_dict(
self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs
):
for hook in self._load_state_dict_pre_hooks.values():
hook(state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs)
persistent_buffers = {k: v for k, v in self._buffers.items() if k not in self._non_persistent_buffers_set}
local_name_params = itertools.chain(self._parameters.items(), persistent_buffers.items())
local_state = {k: v for k, v in local_name_params if v is not None}
key = "qkv_weight"
qkv_w = state_dict[prefix + "W_pack.weight"]
in_features = qkv_w.size(1)
out_features = qkv_w.size(0) // 3
qkv_w.data = qkv_w.view((3, out_features, -1)).transpose(0, 1).reshape(out_features, in_features * 3)
device_mesh = self.helper_layout.device_mesh
sharding_spec = self.helper_layout.sharding_spec
qkv_w = distribute_tensor(qkv_w, device_mesh, sharding_spec)
qkv_w = qkv_w.transpose(0, 1).reshape(3, in_features, -1)
input_param = nn.Parameter(
qkv_w
) # NOTE qkv_weight doesn't have to be a distensor, Like input_param = sharded_tensor_to_param(input_param)
param = local_state[key]
try:
with torch.no_grad():
param.copy_(input_param)
except Exception as ex:
error_msgs.append(
'While copying the parameter named "{}", '
"whose dimensions in the model are {} and "
"whose dimensions in the checkpoint are {}, "
"an exception occurred : {}.".format(key, param.size(), input_param.size(), ex.args)
)
strict = False # to avoid unexpected_keys
super()._load_from_state_dict(
state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs
)
def forward(
self,
hidden_states: torch.Tensor,
@ -220,13 +156,13 @@ class NopadBaichuanAttention(ParallelModule):
cu_seqlens(torch.Tensor, optional): Holding the cumulative sum of sequence length.
high_precision(Optional[bool]): Whether to use float32 for underlying calculations of float16 data to achieve higher precision, defaults to False.
"""
token_nums = hidden_states.size(0)
# fused qkv
hidden_states = hidden_states.expand(3, -1, -1)
query_states, key_states, value_states = (
torch.bmm(hidden_states, self.qkv_weight).view(3, token_nums, self.num_heads, self.head_dim).unbind(0)
)
proj = self.W_pack(hidden_states)
proj = proj.unflatten(-1, (3, self.hidden_size)).unsqueeze(0).transpose(0, -2).squeeze(-2)
query_states = proj[0].view(token_nums, self.num_heads, self.head_dim)
key_states = proj[1].view(token_nums, self.num_heads, self.head_dim)
value_states = proj[2].view(token_nums, self.num_heads, self.head_dim)
block_size = k_cache.size(-2)
@ -279,9 +215,6 @@ class NopadBaichuanAttention(ParallelModule):
return attn_output
def extra_repr(self) -> str:
return f"qkv_weight_proj MergedLinear1D_Col: in_features={self.qkv_weight.shape[1]}x3, out_features={self.qkv_weight.shape[2]}, bias=False"
# NOTE This will cause difference as out length increases.
class NopadBaichuanMLP(NopadLlamaMLP):

View File

@ -1,8 +1,5 @@
from colossalai.inference.config import RPC_PARAM
from colossalai.inference.modeling.layers.baichuan_tp_linear import (
BaichuanLMHeadLinear1D_Col,
BaichuanWpackLinear1D_Col,
)
from colossalai.inference.modeling.layers.baichuan_tp_linear import BaichuanLMHeadLinear1D_Col
from colossalai.inference.modeling.models.nopadding_baichuan import (
NopadBaichuanAttention,
NopadBaichuanMLP,
@ -14,7 +11,7 @@ from colossalai.inference.modeling.models.nopadding_llama import (
llama_model_forward,
)
from colossalai.inference.utils import init_to_get_rotary
from colossalai.shardformer.layer import Linear1D_Col, Linear1D_Row
from colossalai.shardformer.layer import FusedLinear1D_Col, Linear1D_Col, Linear1D_Row
from colossalai.shardformer.policies.base_policy import ModulePolicyDescription, SubModuleReplacementDescription
from colossalai.shardformer.policies.llama import LlamaForCausalLMPolicy
@ -60,8 +57,7 @@ class NoPaddingBaichuanModelInferPolicy(LlamaForCausalLMPolicy, RPC_PARAM):
target_module=NopadBaichuanMLP,
),
SubModuleReplacementDescription(
suffix="self_attn.W_pack",
target_module=BaichuanWpackLinear1D_Col,
suffix="self_attn.W_pack", target_module=FusedLinear1D_Col, kwargs={"n_fused": 3}
),
SubModuleReplacementDescription(
suffix="self_attn.o_proj",