[Inference/Kernel] Add Paged Decoding kernel, sequence split within the same thread block (#5531)

* feat flash decoding for paged attention

* refactor flashdecodingattention

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
pull/5611/head
Steve Luo 2024-04-18 16:45:07 +08:00 committed by GitHub
parent 56b222eff8
commit be396ad6cc
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
15 changed files with 1765 additions and 211 deletions

View File

@ -437,6 +437,19 @@ class NopadLlamaAttention(LlamaAttention):
block_tables,
high_precision,
)
# inference_ops.flash_decoding_attention(
# attn_output,
# query_states,
# k_cache,
# v_cache,
# sequence_lengths,
# block_tables,
# block_size,
# kv_seq_len,
# fd_inter_tensor.mid_output,
# fd_inter_tensor.mid_output_lse,
# sm_scale,
# )
else:
if is_verifier:
rotary_embedding(query_states, key_states, cos_sin[0], cos_sin[1])

View File

@ -4,8 +4,8 @@ from colossalai.kernel.triton import flash_decoding_attention
from colossalai.utils import get_current_device
from tests.test_infer.test_ops.triton.kernel_utils import (
convert_kv_unpad_to_padded,
create_attention_mask,
generate_caches_and_block_tables_v2,
prepare_padding_mask,
torch_attn_ref,
)
from tests.test_infer.test_ops.triton.test_decoding_attn import prepare_data
@ -67,9 +67,18 @@ def bench_kernel(
if provider == "torch":
k_torch = convert_kv_unpad_to_padded(k_unpad, kv_lengths, bsz, max_seq_len_in_b)
v_torch = convert_kv_unpad_to_padded(v_unpad, kv_lengths, bsz, max_seq_len_in_b)
torch_padding_mask = prepare_padding_mask(kv_lengths, bsz, max_seq_len_in_b, q.device)
torch_padding_mask = create_attention_mask(kv_lengths, bsz, Q_LEN, max_seq_len_in_b, q.device)
fn = lambda: torch_attn_ref(
q, k_torch, v_torch, torch_padding_mask, bsz, 1, max_seq_len_in_b, num_attn_heads, num_kv_heads, HEAD_DIM
q,
k_torch,
v_torch,
torch_padding_mask,
bsz,
Q_LEN,
max_seq_len_in_b,
num_attn_heads,
num_kv_heads,
HEAD_DIM,
)
ms, min_ms, max_ms = triton.testing.do_bench(fn, warmup=WARM_UPS, rep=REPS, quantiles=quantiles)
if provider == "triton":

View File

@ -0,0 +1,173 @@
import torch
from colossalai.kernel.kernel_loader import InferenceOpsLoader
from colossalai.kernel.triton import flash_decoding_attention
from colossalai.utils import get_current_device
from tests.test_infer.test_ops.triton.kernel_utils import (
generate_caches_and_block_tables_v2,
generate_caches_and_block_tables_vllm,
)
try:
import triton # noqa
except ImportError:
print("please install triton from https://github.com/openai/triton")
inference_ops = InferenceOpsLoader().load()
# Triton benchmark plot attributions
configs = [
triton.testing.Benchmark(
x_names=["MAX_NUM_BLOCKS_PER_SEQ"],
x_vals=[2**i for i in range(3, 8)],
line_arg="provider",
line_vals=[
"vllm_paged_decoding_attention",
"triton_flash_decoding_attention",
"cuda_flash_decoding_attention",
],
line_names=[
"vllm_paged_decoding_attention",
"triton_flash_decoding_attention",
"cuda_flash_decoding_attention",
],
styles=[("red", "-"), ("blue", "-"), ("yellow", "-")],
ylabel="ms",
plot_name=f"FlashDecodingAttention benchmarking results",
args={"BATCH_SIZE": 16, "BLOCK_SIZE": 32, "HEAD_SIZE": 128, "KV_GROUP_NUM": 2},
)
]
def prepare_data(
BATCH_SIZE: int,
HEAD_SIZE: int,
NUM_ATTN_HEADS: int,
NUM_KV_HEADS: int,
MAX_SEQ_LEN: int,
dtype=torch.float16,
device="cuda",
):
# Use the provided maximum sequence length for each sequence when testing with teh same context length,
# otherwise generate random context lengths.
# returns
# q [BATCH_SIZE, NUM_ATTN_HEADS, HEAD_SIZE]
# k_unpad/v_unpad [num_tokens, NUM_KV_HEADS, HEAD_SIZE]
kv_lengths = torch.randint(low=1, high=MAX_SEQ_LEN, size=(BATCH_SIZE,), dtype=torch.int32, device=device)
num_tokens = torch.sum(kv_lengths).item()
q_size = (BATCH_SIZE, 1, NUM_ATTN_HEADS, HEAD_SIZE)
q = torch.empty(size=q_size, dtype=dtype, device=device).normal_(mean=0.0, std=0.5).transpose(1, 2)
kv_size = (num_tokens, 2 * NUM_KV_HEADS, HEAD_SIZE)
kv_unpad = torch.empty(size=kv_size, dtype=dtype, device=device).normal_(mean=0.0, std=0.5)
k_unpad, v_unpad = torch.split(kv_unpad, [NUM_KV_HEADS, NUM_KV_HEADS], dim=-2)
return q, k_unpad, v_unpad, kv_lengths
@triton.testing.perf_report(configs)
def benchmark_flash_decoding_attention(
provider: str,
BATCH_SIZE: int,
BLOCK_SIZE: int,
MAX_NUM_BLOCKS_PER_SEQ: int,
HEAD_SIZE: int,
KV_GROUP_NUM: int,
):
try:
from vllm._C import ops as vllm_ops
except ImportError:
raise ImportError("Please install vllm from https://github.com/vllm-project/vllm")
warmup = 10
rep = 1000
dtype = torch.float16
NUM_ATTN_HEADS = 16
NUM_KV_HEADS = NUM_ATTN_HEADS // KV_GROUP_NUM
assert isinstance(NUM_KV_HEADS, int) and NUM_KV_HEADS > 0, "Invalid number of kv heads."
MAX_SEQ_LEN = BLOCK_SIZE * MAX_NUM_BLOCKS_PER_SEQ
device = get_current_device()
q, k_unpad, v_unpad, kv_seq_lengths = prepare_data(
BATCH_SIZE, HEAD_SIZE, NUM_ATTN_HEADS, NUM_KV_HEADS, MAX_SEQ_LEN, dtype, device
)
k_cache, v_cache, block_tables = generate_caches_and_block_tables_v2(
k_unpad, v_unpad, kv_seq_lengths, BATCH_SIZE, MAX_NUM_BLOCKS_PER_SEQ, BLOCK_SIZE, dtype, device
)
vllm_k_cache, vllm_v_cache, _ = generate_caches_and_block_tables_vllm(
k_unpad, v_unpad, kv_seq_lengths, BATCH_SIZE, MAX_NUM_BLOCKS_PER_SEQ, BLOCK_SIZE, dtype, device
)
block_tables = block_tables.to(device=device)
max_seq_len_across_batch = kv_seq_lengths.max().item()
kv_max_split_num = (max_seq_len_across_batch + BLOCK_SIZE - 1) // BLOCK_SIZE
output = torch.empty((BATCH_SIZE, NUM_ATTN_HEADS, HEAD_SIZE), dtype=dtype, device=device)
sm_scale = 1.0 / (HEAD_SIZE**0.5)
mid_output = torch.empty(
size=(BATCH_SIZE, NUM_ATTN_HEADS, kv_max_split_num, HEAD_SIZE), dtype=torch.float32, device=device
)
mid_output_lse = torch.empty(
size=(BATCH_SIZE, NUM_ATTN_HEADS, kv_max_split_num), dtype=torch.float32, device=device
)
if provider == "vllm_paged_decoding_attention":
alibi_slopes = None
fn = lambda: vllm_ops.paged_attention_v1(
output,
q.squeeze(2),
vllm_k_cache,
vllm_v_cache,
NUM_KV_HEADS,
sm_scale,
block_tables,
kv_seq_lengths,
BLOCK_SIZE,
max_seq_len_across_batch,
alibi_slopes,
"auto",
)
elif provider == "triton_flash_decoding_attention":
fn = lambda: flash_decoding_attention(
q.squeeze(2),
k_cache,
v_cache,
kv_seq_lengths,
block_tables,
BLOCK_SIZE,
max_seq_len_across_batch,
output,
mid_output,
mid_output_lse,
sm_scale=sm_scale,
kv_group_num=KV_GROUP_NUM,
) # [bsz, 1, num_heads, head_dim]
elif provider == "cuda_flash_decoding_attention":
fn = lambda: inference_ops.flash_decoding_attention(
output,
q.squeeze(2),
k_cache,
v_cache,
kv_seq_lengths,
block_tables,
BLOCK_SIZE,
max_seq_len_across_batch,
mid_output,
mid_output_lse,
sm_scale,
)
else:
raise ValueError("Undefined provider.")
ms = triton.testing.do_bench(fn, warmup=warmup, rep=rep)
return ms
if __name__ == "__main__":
benchmark_flash_decoding_attention.run(save_path=".", print_data=True)

View File

@ -0,0 +1,206 @@
/*
* Adapted from
* https://github.com/NVIDIA/FasterTransformer/blob/release/v5.3_tag/src/fastertransformer/kernels/decoder_masked_multihead_attention/decoder_masked_multihead_attention_template.hpp
* Copyright (c) 2024, The Colossal-AI team.
* Copyright (c) 2023, The vLLM team.
* Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <cuda_bf16.h>
#include <cuda_fp16.h>
#include <float.h>
#include "../funcs/binary_functor.h"
#include "../funcs/cast_functor.h"
#include "../funcs/ternary_functor.h"
#include "../funcs/unary_functor.h"
#include "../utils/vec_type_traits.h"
namespace colossalAI {
namespace cuda {
namespace attention {
using colossalAI::cuda::funcs::BinaryOpFunctor;
using colossalAI::cuda::funcs::BinaryOpType;
using colossalAI::cuda::funcs::TernaryOpFunctor;
using colossalAI::cuda::funcs::TernaryOpType;
using colossalAI::cuda::funcs::UnaryOpFunctor;
using colossalAI::cuda::funcs::UnaryOpType;
using colossalAI::cuda::utils::FloatVecTypeTrait;
#define WARP_SIZE 32
#define VEC_SIZE_8 8
#define SHFL_XOR_SYNC(var, lane_mask) \
__shfl_xor_sync(uint32_t(-1), var, lane_mask)
#define SHFL_SYNC(var, src_lane) __shfl_sync(uint32_t(-1), var, src_lane)
// Q*K^T operation.
template <int NUM_THREADS_PER_TOKEN, typename VecT, int N>
inline __device__ float qk_dot_(const VecT (&q)[N], const VecT (&k)[N]) {
using A_vec = typename FloatVecTypeTrait<VecT>::Type;
// Compute the parallel products for Q*K^T (treat vector lanes separately).
BinaryOpFunctor<VecT, VecT, A_vec, BinaryOpType::kMul> mul_vect;
UnaryOpFunctor<A_vec, float, UnaryOpType::kSum> sum_vect;
TernaryOpFunctor<VecT, VecT, A_vec, TernaryOpType::kFma> fma;
A_vec qk_vec = mul_vect(q[0], k[0]);
#pragma unroll
for (int ii = 1; ii < N; ii++) {
qk_vec = fma(q[ii], k[ii], qk_vec);
}
// Finalize the reduction across lanes.
float qk = sum_vect(qk_vec);
#pragma unroll
for (int mask = (NUM_THREADS_PER_TOKEN >> 1); mask > 0; mask >>= 1) {
qk += SHFL_XOR_SYNC(qk, mask);
}
return qk;
}
template <typename T, int NUM_THREADS_PER_TOKEN>
struct Qk_dot {
template <typename VecT, int N>
static inline __device__ float dot(const VecT (&q)[N], const VecT (&k)[N]) {
return qk_dot_<NUM_THREADS_PER_TOKEN>(q, k);
}
};
template <int NUM_WARPS, int NUM_THREADS_PER_TOKEN>
inline __device__ float block_max(float* red_smem, float max) {
int warp = threadIdx.x >> 5;
int lane = threadIdx.x & 0x1f;
// Perform reduction across the threads in the same warp to get the max value
// for each warp, the 1st out of NUM_THREADS_PER_TOKEN thread already has the
// max value among every NUM_THREADS_PER_TOKEN threads.
#pragma unroll
for (int mask = (WARP_SIZE >> 1); mask >= NUM_THREADS_PER_TOKEN; mask >>= 1) {
max = fmaxf(max, SHFL_XOR_SYNC(max, mask));
}
if (lane == 0) red_smem[warp] = max;
__syncthreads();
// The warps compute the final maxs.
max = lane < NUM_WARPS ? red_smem[lane] : -FLT_MAX;
// Parallel reduction of all tokens from the same sequence inside the warp.
#pragma unroll
for (int mask = (NUM_WARPS >> 1); mask > 0; mask >>= 1) {
max = fmaxf(max, SHFL_XOR_SYNC(max, mask));
}
// Broadcast to other threads.
return SHFL_SYNC(max, 0);
}
// here we need another block_sum instead of using block_reduce
// since we need manage shared memory in a explicit way
template <int NUM_WARPS>
inline __device__ float block_sum(float* red_smem, float sum) {
int warp = threadIdx.x >> 5;
int lane = threadIdx.x & 0x1f;
// Compute the sum per warp.
#pragma unroll
for (int mask = (WARP_SIZE >> 1); mask > 0; mask >>= 1) {
sum += SHFL_XOR_SYNC(sum, mask);
}
if (lane == 0) red_smem[warp] = sum;
__syncthreads();
if (lane < NUM_WARPS) {
sum = red_smem[lane];
}
// Parallel reduction of all tokens from the same sequence inside the warp.
#pragma unroll
for (int mask = (NUM_WARPS >> 1); mask > 0; mask >>= 1) {
sum += SHFL_XOR_SYNC(sum, mask);
}
// Broadcast to other threads.
return SHFL_SYNC(sum, 0);
}
// here VecT is a vector of float, whose size is N
template <typename VecT, int NUM_WARPS, int NUM_THREADS_PER_GROUP, int N>
inline __device__ void block_sum(float* red_smem, VecT& acc) {
float* acc_ptr = reinterpret_cast<float*>(&acc);
int warp = threadIdx.x >> 5;
int lane = threadIdx.x & 0x1f;
#pragma unroll
for (int i = 0; i < N; i++) {
#pragma unroll
for (int mask = (WARP_SIZE >> 1); mask >= NUM_THREADS_PER_GROUP;
mask >>= 1) {
acc_ptr[i] += SHFL_XOR_SYNC(acc_ptr[i], mask);
}
}
#pragma unroll
for (int limit = NUM_WARPS; limit > 1; limit >>= 1) {
int mid = limit >> 1;
if (warp >= mid && warp < limit) {
float* dst = red_smem + (warp - mid) * N * NUM_THREADS_PER_GROUP;
if (lane < NUM_THREADS_PER_GROUP) {
if constexpr (N == VEC_SIZE_8) {
VecT* vdst = &((reinterpret_cast<VecT*>(dst))[lane]);
(reinterpret_cast<float4*>(vdst))[0] =
(reinterpret_cast<float4*>(acc_ptr))[0];
(reinterpret_cast<float4*>(vdst))[1] =
(reinterpret_cast<float4*>(acc_ptr))[1];
} else {
(reinterpret_cast<VecT*>(dst))[lane] = acc;
}
}
}
__syncthreads();
if (warp < mid) {
float* src = red_smem + warp * N * NUM_THREADS_PER_GROUP;
VecT src_reg;
if (lane < NUM_THREADS_PER_GROUP) {
float* src_ptr = reinterpret_cast<float*>(&src_reg);
if constexpr (N == VEC_SIZE_8) {
VecT* vsrc = &((reinterpret_cast<VecT*>(src))[lane]);
(reinterpret_cast<float4*>(src_ptr))[0] =
(reinterpret_cast<float4*>(vsrc))[0];
(reinterpret_cast<float4*>(src_ptr))[1] =
(reinterpret_cast<float4*>(vsrc))[1];
} else {
src_reg = (reinterpret_cast<VecT*>(src))[lane];
}
#pragma unroll
for (int j = 0; j < N; j++) {
acc_ptr[j] += src_ptr[j];
}
}
}
__syncthreads();
}
}
#undef SHFL_SYNC
#undef SHFL_XOR_SYNC
} // namespace attention
} // namespace cuda
} // namespace colossalAI

View File

@ -0,0 +1,353 @@
/*This code adapted from vllm:
* https://github.com/vllm-project/vllm/blob/main/csrc/attention/attention_kernels.cu
* with different kvcache layout. */
#include <ATen/cuda/CUDAContext.h>
#include <torch/extension.h>
#include <c10/cuda/CUDAGuard.h>
#include <stdio.h>
#include "../common/micros.h"
#include "funcs/cast_functor.h"
#include "funcs/ternary_functor.h"
#include "funcs/binary_functor.h"
#include "utils/vec_type_traits.h"
#include "attention/attention_utils.h"
#define WARP_SIZE 32
#define MAX(a, b) ((a) > (b) ? (a) : (b))
#define MIN(a, b) ((a) < (b) ? (a) : (b))
#define DIVIDE_ROUND_UP(a, b) (((a) + (b) - 1) / (b))
// 2^n => 2^n, 2^n-d => 2^(n-1)
#define ROUND_DOWN_HIGHEST_POWER_OF_TWO(x) (nextHighestPowerOf2((x - (x + 1) / 2 + 1)))
// a bit magic, you can ask chatgpt for help
// 2^n => 2^n, 2^n-d => 2^n
constexpr unsigned int nextHighestPowerOf2(unsigned int v) {
v--;
v |= v >> 1;
v |= v >> 2;
v |= v >> 4;
v |= v >> 8;
v |= v >> 16;
v++;
return v;
}
using colossalAI::cuda::funcs::BinaryOpType;
using colossalAI::cuda::funcs::CastFunctor;
using colossalAI::cuda::funcs::TernaryOpFunctor;
using colossalAI::cuda::funcs::TernaryOpType;
using colossalAI::cuda::funcs::zero;
using colossalAI::cuda::utils::VecTypeTrait;
using colossalAI::cuda::utils::FloatVecTypeTrait;
using namespace colossalAI::cuda::attention;
// We only support head size of { 64, 128, 256 }
// models like Phi-2, whose head size is 80, is not supported right now
template<typename scalar_t, typename cache_t, int HEAD_SIZE, int BLOCK_SIZE, int NUM_THREADS>
__global__ void flash_decoding_attention_kernel(
scalar_t* __restrict__ out, // [num_tokens, num_heads, head_size]
const scalar_t* __restrict__ q, // [num_tokens, num_heads, head_size]
const cache_t* __restrict__ k_cache, // [num_blocks, num_kv_heads, block_size, head_size]
const cache_t* __restrict__ v_cache, // [num_blocks, num_kv_heads, block_size, head_size]
const int* __restrict__ context_lens, // [num_tokens]
const int* __restrict__ block_tables, // [num_tokens, max_num_blocks_per_seq]
const int max_seq_len,
const int num_kv_heads,
const float scale,
const int max_num_blocks_per_seq,
const int q_stride, // num_heads * head_size
const int kv_block_stride,
const int kv_head_stride) {
const int seq_idx = blockIdx.y;
const int head_idx = blockIdx.x;
const int thread_idx = threadIdx.x;
const int lane = thread_idx % WARP_SIZE;
const int warp_idx = thread_idx / WARP_SIZE;
const int num_heads = gridDim.x;
const int num_queries_per_kv = num_heads / num_kv_heads;
const int kv_head_idx = head_idx / num_queries_per_kv;
constexpr int NUM_WARPS = NUM_THREADS / WARP_SIZE;
constexpr int Q_SHARED_SIZE = (HEAD_SIZE * sizeof(scalar_t)) / sizeof(float4);
// here thread_group does not determine the number of threads responsible for a key
// but only the VEC_SIZE of each thread
constexpr int THREAD_GROUP_SIZE = MAX(WARP_SIZE / BLOCK_SIZE, 1);
constexpr int VEC_SIZE = MIN(ROUND_DOWN_HIGHEST_POWER_OF_TWO((HEAD_SIZE / THREAD_GROUP_SIZE)), sizeof(float4) / sizeof(scalar_t));
constexpr int NUM_VECS_PER_TOKEN = HEAD_SIZE / VEC_SIZE;
constexpr int NUM_THREADS_PER_TOKEN = MIN(NUM_VECS_PER_TOKEN, WARP_SIZE);
constexpr int NUM_ROUNDS_PER_TOKEN = NUM_VECS_PER_TOKEN / NUM_THREADS_PER_TOKEN;
constexpr int WARP_STRIDE = WARP_SIZE * NUM_ROUNDS_PER_TOKEN;
using K_vec = typename VecTypeTrait<scalar_t, VEC_SIZE>::Type;
using V_vec = typename VecTypeTrait<scalar_t, VEC_SIZE>::Type;
using L_vec = typename VecTypeTrait<scalar_t, VEC_SIZE>::Type;
using Float_vec = typename FloatVecTypeTrait<L_vec>::Type;
const int context_len = context_lens[seq_idx];
const int thread_group_offset = thread_idx % NUM_THREADS_PER_TOKEN;
const int num_context_blocks = DIVIDE_ROUND_UP(context_len, BLOCK_SIZE);
const int* block_table = block_tables + seq_idx * max_num_blocks_per_seq;
__shared__ float4 q_shared[Q_SHARED_SIZE];
__shared__ float red_shared_mem[2 * NUM_WARPS];
extern __shared__ char shared_mem[];
float* logits = reinterpret_cast<float*>(shared_mem);
float* out_shared_mem = reinterpret_cast<float*>(shared_mem);
float qk_max = -FLT_MAX;
const float4* q_ptr = reinterpret_cast<const float4*>(q + seq_idx * q_stride + head_idx * HEAD_SIZE);
#pragma unroll
for (int idx = thread_idx; idx < Q_SHARED_SIZE; idx += blockDim.x) {
q_shared[idx] = q_ptr[idx];
}
__syncthreads();
scalar_t* q_shared_ptr = reinterpret_cast<scalar_t*>(q_shared);
// each warp access a whole block
for (int block_idx = warp_idx; block_idx < num_context_blocks; block_idx += NUM_WARPS) {
const int64_t physical_block_number = static_cast<int64_t>(block_table[block_idx]);
#pragma unroll
for (int idx = lane; idx < BLOCK_SIZE * NUM_VECS_PER_TOKEN; idx += WARP_STRIDE) {
const int token_idx = block_idx * BLOCK_SIZE + idx / NUM_VECS_PER_TOKEN;
const cache_t* k_ptr = k_cache + physical_block_number * kv_block_stride
+ kv_head_idx * kv_head_stride
+ idx * VEC_SIZE;
K_vec k_vecs[NUM_ROUNDS_PER_TOKEN];
K_vec q_vecs[NUM_ROUNDS_PER_TOKEN];
// we must calculate at least one row of hidden vectors
#pragma unroll
for (int i = 0; i < NUM_ROUNDS_PER_TOKEN; i++) {
k_vecs[i] = (reinterpret_cast<const K_vec*>(k_ptr))[i * WARP_SIZE];
q_vecs[i] = (reinterpret_cast<K_vec*>(q_shared_ptr))[(idx + i * WARP_SIZE) % NUM_VECS_PER_TOKEN];
}
float qk = scale * Qk_dot<scalar_t, NUM_THREADS_PER_TOKEN>::dot(q_vecs, k_vecs);
if (thread_group_offset == 0) {
const bool mask = token_idx >= context_len;
logits[token_idx] = mask ? 0.f : qk;
qk_max = mask ? qk_max : fmaxf(qk_max, qk);
}
}
}
// there exists a __syncthreads within this function
qk_max = block_max<NUM_WARPS, NUM_THREADS_PER_TOKEN>(red_shared_mem, qk_max);
// Get the sum of the exp values.
float exp_sum = 0.f;
for (int i = thread_idx; i < context_len; i += NUM_THREADS) {
float val = __expf(logits[i] - qk_max);
logits[i] = val;
exp_sum += val;
}
exp_sum = block_sum<NUM_WARPS>(&red_shared_mem[NUM_WARPS], exp_sum);
const float inv_sum = __fdividef(1.f, exp_sum + 1e-6f);
for (int i = thread_idx; i < context_len; i += NUM_THREADS) {
logits[i] *= inv_sum;
}
__syncthreads();
Float_vec accs[NUM_ROUNDS_PER_TOKEN];
#pragma unroll
for (int i = 0; i < NUM_ROUNDS_PER_TOKEN; i++) {
zero(accs[i]);
}
V_vec zero_value;
zero(zero_value);
for (int block_idx = warp_idx; block_idx < num_context_blocks; block_idx += NUM_WARPS) {
const int64_t physical_block_number = static_cast<int64_t>(block_table[block_idx]);
scalar_t logit;
#pragma unroll
for (int idx = lane; idx < BLOCK_SIZE * NUM_VECS_PER_TOKEN; idx += WARP_STRIDE) {
const int token_idx = block_idx * BLOCK_SIZE + idx / NUM_VECS_PER_TOKEN;
const cache_t* v_ptr = v_cache + physical_block_number * kv_block_stride
+ kv_head_idx * kv_head_stride
+ idx * VEC_SIZE;
V_vec v_vecs[NUM_ROUNDS_PER_TOKEN];
#pragma unroll
for (int i = 0; i < NUM_ROUNDS_PER_TOKEN; i++) {
v_vecs[i] = (reinterpret_cast<const V_vec*>(v_ptr))[i * WARP_SIZE];
}
if (token_idx >= context_len) {
#pragma unroll
for (int i = 0; i < NUM_ROUNDS_PER_TOKEN; i++) {
v_vecs[i] = zero_value;
}
}
logit = CastFunctor<float, scalar_t>()(logits[token_idx]);
#pragma unroll
for (int i = 0; i < NUM_ROUNDS_PER_TOKEN; i++) {
accs[i] = TernaryOpFunctor<scalar_t, V_vec, Float_vec, TernaryOpType::kFma>()(logit, v_vecs[i], accs[i]);
}
}
}
// must insert a sync since both logits and out_shared_mem occupy the same buffer space
__syncthreads();
#pragma unroll
for (int i = 0; i < NUM_ROUNDS_PER_TOKEN; i++) {
block_sum<Float_vec, NUM_WARPS, NUM_THREADS_PER_TOKEN, VEC_SIZE>(out_shared_mem, accs[i]);
}
scalar_t* out_ptr = out + seq_idx * q_stride + head_idx * HEAD_SIZE;
L_vec out_reg;
#pragma unroll
for (int i = 0; i < NUM_ROUNDS_PER_TOKEN; i++) {
if (thread_idx < NUM_THREADS_PER_TOKEN) {
out_reg = CastFunctor<Float_vec, L_vec>()(accs[i]);
(reinterpret_cast<L_vec*>(out_ptr))[thread_idx + i * NUM_THREADS_PER_TOKEN] = out_reg;
}
}
}
#define LAUNCH_FLASH_DECODING_ATTENTION_V1(HEAD_SIZE) \
cudaFuncSetAttribute( \
((void*)flash_decoding_attention_kernel<T, CACHE_T, HEAD_SIZE, BLOCK_SIZE, NUM_THREADS>), \
cudaFuncAttributeMaxDynamicSharedMemorySize, shared_mem_size); \
flash_decoding_attention_kernel<T, CACHE_T, HEAD_SIZE, BLOCK_SIZE, NUM_THREADS> \
<<<grid, block, shared_mem_size, stream>>>( \
reinterpret_cast<T*>(out.data_ptr()), \
reinterpret_cast<T*>(query.data_ptr()), \
reinterpret_cast<CACHE_T*>(key_cache.data_ptr()), \
reinterpret_cast<CACHE_T*>(value_cache.data_ptr()), \
context_lens.data_ptr<int>(), \
block_tables.data_ptr<int>(), \
max_context_len, \
num_kv_heads, \
scale, \
max_num_blocks_per_seq, \
q_stride, \
kv_block_stride, \
kv_head_stride);
template<
typename T,
typename CACHE_T,
int BLOCK_SIZE,
int NUM_THREADS = 128>
void flash_decoding_attention_v1_launcher(
torch::Tensor& out, // [num_tokens, num_heads, head_size]
torch::Tensor& query, // [num_tokens, num_heads, head_size]
torch::Tensor& key_cache, // [num_blocks, num_kv_heads, block_size, head_size]
torch::Tensor& value_cache, // [num_blocks, num_kv_heads, block_size, head_size]
torch::Tensor& context_lens, // [num_tokens]
torch::Tensor& block_tables, // [num_tokens, max_num_blocks_per_seq]
int max_context_len,
float scale) {
int num_tokens = query.size(0);
int num_heads = query.size(1);
int head_size = query.size(2);
int max_num_blocks_per_seq = block_tables.size(1);
int q_stride = query.stride(0);
int num_kv_heads = key_cache.size(1);
int kv_block_stride = key_cache.stride(0);
int kv_head_stride = key_cache.stride(1);
constexpr int NUM_WARPS = NUM_THREADS / WARP_SIZE;
constexpr int THREAD_GROUP_SIZE = MAX(WARP_SIZE / BLOCK_SIZE, 1);
const int VEC_SIZE = MIN(ROUND_DOWN_HIGHEST_POWER_OF_TWO((head_size / THREAD_GROUP_SIZE)), sizeof(float4) / sizeof(T));
const int NUM_VECS_PER_TOKEN = head_size / VEC_SIZE;
const int NUM_THREADS_PER_TOKEN = MIN(NUM_VECS_PER_TOKEN, WARP_SIZE);
int padded_max_context_len = DIVIDE_ROUND_UP(max_context_len, BLOCK_SIZE) * BLOCK_SIZE;
int logits_size = padded_max_context_len * sizeof(float);
int outputs_size = (NUM_WARPS / 2) * NUM_THREADS_PER_TOKEN * VEC_SIZE * sizeof(float);
// Keep that in sync with the logic here!
int shared_mem_size = std::max(logits_size, outputs_size);
dim3 grid(num_heads, num_tokens, 1);
dim3 block(NUM_THREADS);
const at::cuda::OptionalCUDAGuard device_guard(device_of(query));
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
switch (head_size) {
// NOTE(woosuk): To reduce the compilation time, we only compile for the
// head sizes that we use in the model.
case 64:
LAUNCH_FLASH_DECODING_ATTENTION_V1(64);
break;
case 128:
LAUNCH_FLASH_DECODING_ATTENTION_V1(128);
break;
case 256:
LAUNCH_FLASH_DECODING_ATTENTION_V1(256);
break;
default:
AT_ERROR("head size must be 64, 128, 256");
break;
}
}
#define CALL_V1_LAUNCHER(T, CACHE_T, BLOCK_SIZE) \
flash_decoding_attention_v1_launcher<T, CACHE_T, BLOCK_SIZE>( \
out, \
query, \
key_cache, \
value_cache, \
context_lens, \
block_tables, \
max_context_len, \
scale);
// NOTE(woosuk): To reduce the compilation time, we omitted block sizes
// 1, 2, 4, 64, 128, 256.
#define CALL_V1_LAUNCHER_BLOCK_SIZE(T, CACHE_T) \
switch (block_size) { \
case 8: \
CALL_V1_LAUNCHER(T, CACHE_T, 8); \
break; \
case 16: \
CALL_V1_LAUNCHER(T, CACHE_T, 16); \
break; \
case 32: \
CALL_V1_LAUNCHER(T, CACHE_T, 32); \
break; \
default: \
AT_ERROR("block size must be 8, 16, 32"); \
break; \
}
void flash_decoding_attention(
torch::Tensor& out, // [num_tokens, num_heads, head_size]
torch::Tensor& query, // [num_tokens, num_heads, head_size]
torch::Tensor& key_cache, // [num_blocks, num_kv_heads, block_size, head_size]
torch::Tensor& value_cache, // [num_blocks, num_kv_heads, block_size, head_size]
torch::Tensor& context_lens, // [num_tokens]
torch::Tensor& block_tables, // [num_tokens, max_num_blocks_per_seq]
int block_size,
int max_context_len,
torch::Tensor& tmp_out, // [num_tokens, num_heads, max_num_partitions, head_size]
torch::Tensor& tmp_out_lse, // [num_tokens, num_heads, max_num_partitions]
float scale) {
switch (query.scalar_type()) {
case at::ScalarType::Float:
CALL_V1_LAUNCHER_BLOCK_SIZE(float, float);
break;
case at::ScalarType::Half:
CALL_V1_LAUNCHER_BLOCK_SIZE(half, half);
break;
case at::ScalarType::BFloat16:
CALL_V1_LAUNCHER_BLOCK_SIZE(__nv_bfloat16, __nv_bfloat16);
break;
default:
AT_ERROR("Unsupported data type: ", toString(query.scalar_type()));
}
}
#undef LAUNCH_FLASH_DECODING_ATTENTION_V1
#undef CALL_V1_LAUNCHER
#undef CALL_V1_LAUNCHER_BLOCK_SIZE

View File

@ -8,11 +8,20 @@
#include <functional>
#include "../utils/micros.h"
#include "../utils/vec_type_traits.h"
#include "cast_functor.h"
namespace colossalAI {
namespace cuda {
namespace funcs {
using utils::bfloat164;
using utils::bfloat168;
using utils::float4_;
using utils::float8_;
using utils::half4;
using utils::half8;
enum class BinaryOpType { kAdd = 0, kMinus, kMul, kDiv, kMax, kMin };
// Note(LiuYang): This file provides base math operation for data type
@ -22,73 +31,182 @@ enum class BinaryOpType { kAdd = 0, kMinus, kMul, kDiv, kMax, kMin };
template <typename LT, typename RT, typename RET, BinaryOpType op_type>
struct BinaryOpFunctor;
#define COLOSSAL_BINARY_FUNCTOR_SPECIALIZATION(T, BINARY_OP_TYPE, STMT, \
FUNCTION_MODIFIER, ARGS...) \
template <ARGS> \
struct BinaryOpFunctor<T, T, T, BINARY_OP_TYPE> \
: public std::binary_function<T, T, T> { \
FUNCTION_MODIFIER T operator()(T lhs, T rhs) { return STMT; } \
#define STMTS_WRAPPER(...) __VA_ARGS__
#define COLOSSAL_BINARY_FUNCTOR_SPECIALIZATION( \
LT, RT, RET, BINARY_OP_TYPE, FUNCTION_MODIFIER, STMTS, ARGS...) \
template <ARGS> \
struct BinaryOpFunctor<LT, RT, RET, BINARY_OP_TYPE> \
: public std::binary_function<LT, RT, RET> { \
FUNCTION_MODIFIER RET operator()(LT lhs, RT rhs) STMTS \
};
COLOSSAL_BINARY_FUNCTOR_SPECIALIZATION(T, BinaryOpType::kAdd, lhs + rhs,
HOSTDEVICE, typename T)
COLOSSAL_BINARY_FUNCTOR_SPECIALIZATION(T, BinaryOpType::kMinus, lhs - rhs,
HOSTDEVICE, typename T)
COLOSSAL_BINARY_FUNCTOR_SPECIALIZATION(T, BinaryOpType::kMul, lhs* rhs,
HOSTDEVICE, typename T)
COLOSSAL_BINARY_FUNCTOR_SPECIALIZATION(T, BinaryOpType::kDiv, lhs / rhs,
HOSTDEVICE, typename T)
COLOSSAL_BINARY_FUNCTOR_SPECIALIZATION(T, BinaryOpType::kMax, max(lhs, rhs),
HOSTDEVICE, typename T)
COLOSSAL_BINARY_FUNCTOR_SPECIALIZATION(T, BinaryOpType::kMin, min(lhs, rhs),
HOSTDEVICE, typename T)
COLOSSAL_BINARY_FUNCTOR_SPECIALIZATION(T, T, T, BinaryOpType::kAdd, HOSTDEVICE,
STMTS_WRAPPER({ return lhs + rhs; }),
typename T)
COLOSSAL_BINARY_FUNCTOR_SPECIALIZATION(T, T, T, BinaryOpType::kMinus,
HOSTDEVICE,
STMTS_WRAPPER({ return lhs - rhs; }),
typename T)
COLOSSAL_BINARY_FUNCTOR_SPECIALIZATION(T, T, T, BinaryOpType::kMul, HOSTDEVICE,
STMTS_WRAPPER({ return lhs * rhs; }),
typename T)
COLOSSAL_BINARY_FUNCTOR_SPECIALIZATION(T, T, T, BinaryOpType::kDiv, HOSTDEVICE,
STMTS_WRAPPER({ return lhs / rhs; }),
typename T)
COLOSSAL_BINARY_FUNCTOR_SPECIALIZATION(T, T, T, BinaryOpType::kMax, HOSTDEVICE,
STMTS_WRAPPER({ return max(lhs, rhs); }),
typename T)
COLOSSAL_BINARY_FUNCTOR_SPECIALIZATION(T, T, T, BinaryOpType::kMin, HOSTDEVICE,
STMTS_WRAPPER({ return min(lhs, rhs); }),
typename T)
COLOSSAL_BINARY_FUNCTOR_SPECIALIZATION(half, BinaryOpType::kAdd,
__hadd(lhs, rhs), DEVICE)
COLOSSAL_BINARY_FUNCTOR_SPECIALIZATION(half2, BinaryOpType::kAdd,
__hadd2(lhs, rhs), DEVICE)
COLOSSAL_BINARY_FUNCTOR_SPECIALIZATION(half, half, half, BinaryOpType::kAdd,
DEVICE, STMTS_WRAPPER({
return __hadd(lhs, rhs);
}))
COLOSSAL_BINARY_FUNCTOR_SPECIALIZATION(half2, half2, half2, BinaryOpType::kAdd,
DEVICE, STMTS_WRAPPER({
return __hadd2(lhs, rhs);
}))
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800
COLOSSAL_BINARY_FUNCTOR_SPECIALIZATION(__nv_bfloat16, BinaryOpType::kAdd,
__hadd(lhs, rhs), DEVICE)
COLOSSAL_BINARY_FUNCTOR_SPECIALIZATION(__nv_bfloat162, BinaryOpType::kAdd,
__hadd2(lhs, rhs), DEVICE)
COLOSSAL_BINARY_FUNCTOR_SPECIALIZATION(__nv_bfloat16, __nv_bfloat16,
__nv_bfloat16, BinaryOpType::kAdd,
DEVICE, STMTS_WRAPPER({
return __hadd(lhs, rhs);
}))
COLOSSAL_BINARY_FUNCTOR_SPECIALIZATION(__nv_bfloat162, __nv_bfloat162,
__nv_bfloat162, BinaryOpType::kAdd,
DEVICE, STMTS_WRAPPER({
return __hadd2(lhs, rhs);
}))
#else
COLOSSAL_BINARY_FUNCTOR_SPECIALIZATION(__nv_bfloat16, BinaryOpType::kAdd,
__float2bfloat16(__bfloat162float(lhs) +
__bfloat162float(rhs)),
DEVICE)
COLOSSAL_BINARY_FUNCTOR_SPECIALIZATION(
__nv_bfloat162, BinaryOpType::kAdd,
__floats2bfloat162_rn(__low2float(lhs) + __low2float(rhs),
__high2float(lhs) + __high2float(rhs)),
DEVICE)
#endif
__nv_bfloat16, __nv_bfloat16, __nv_bfloat16, BinaryOpType::kAdd, DEVICE,
STMTS_WRAPPER({
return __float2bfloat16(__bfloat162float(lhs) + __bfloat162float(rhs));
}))
COLOSSAL_BINARY_FUNCTOR_SPECIALIZATION(
__nv_bfloat162, __nv_bfloat162, __nv_bfloat162, BinaryOpType::kAdd, DEVICE,
STMTS_WRAPPER({
return __floats2bfloat162_rn(__low2float(lhs) + __low2float(rhs),
__high2float(lhs) + __high2float(rhs));
}))
#endif /* defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800 */
COLOSSAL_BINARY_FUNCTOR_SPECIALIZATION(half, BinaryOpType::kMul,
__hmul(lhs, rhs), DEVICE)
COLOSSAL_BINARY_FUNCTOR_SPECIALIZATION(half2, BinaryOpType::kMul,
__hmul2(lhs, rhs), DEVICE)
COLOSSAL_BINARY_FUNCTOR_SPECIALIZATION(half, half, half, BinaryOpType::kMul,
DEVICE, STMTS_WRAPPER({
return __hmul(lhs, rhs);
}))
COLOSSAL_BINARY_FUNCTOR_SPECIALIZATION(half2, half2, half2, BinaryOpType::kMul,
DEVICE, STMTS_WRAPPER({
return __hmul2(lhs, rhs);
}))
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800
COLOSSAL_BINARY_FUNCTOR_SPECIALIZATION(__nv_bfloat16, BinaryOpType::kMul,
__hmul(lhs, rhs), DEVICE)
COLOSSAL_BINARY_FUNCTOR_SPECIALIZATION(__nv_bfloat162, BinaryOpType::kMul,
__hmul2(lhs, rhs), DEVICE)
COLOSSAL_BINARY_FUNCTOR_SPECIALIZATION(__nv_bfloat16, __nv_bfloat16,
__nv_bfloat16, BinaryOpType::kMul,
DEVICE, STMTS_WRAPPER({
return __hmul(lhs, rhs);
}))
COLOSSAL_BINARY_FUNCTOR_SPECIALIZATION(__nv_bfloat162, __nv_bfloat162,
__nv_bfloat162, BinaryOpType::kMul,
DEVICE, STMTS_WRAPPER({
return __hmul2(lhs, rhs);
}))
#else
COLOSSAL_BINARY_FUNCTOR_SPECIALIZATION(__nv_bfloat16, BinaryOpType::kMul,
__float2bfloat16(__bfloat162float(lhs) *
__bfloat162float(rhs)),
DEVICE)
COLOSSAL_BINARY_FUNCTOR_SPECIALIZATION(
__nv_bfloat162, BinaryOpType::kMul,
__floats2bfloat162_rn(__low2float(lhs) * __low2float(rhs),
__high2float(lhs) * __high2float(rhs)),
DEVICE)
#endif
__nv_bfloat16, __nv_bfloat16, __nv_bfloat16, BinaryOpType::kMul, DEVICE,
STMTS_WRAPPER({
return __float2bfloat16(__bfloat162float(lhs) * __bfloat162float(rhs));
}))
COLOSSAL_BINARY_FUNCTOR_SPECIALIZATION(
__nv_bfloat162, __nv_bfloat162, __nv_bfloat162, BinaryOpType::kMul, DEVICE,
STMTS_WRAPPER({
return __floats2bfloat162_rn(__low2float(lhs) * __low2float(rhs),
__high2float(lhs) * __high2float(rhs));
}))
#endif /* defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800 */
COLOSSAL_BINARY_FUNCTOR_SPECIALIZATION(
float2, float2, float2, BinaryOpType::kMul, DEVICE,
STMTS_WRAPPER({ return make_float2(lhs.x * rhs.x, lhs.y * rhs.y); }))
COLOSSAL_BINARY_FUNCTOR_SPECIALIZATION(float4, float4, float4,
BinaryOpType::kMul, DEVICE,
STMTS_WRAPPER({
return make_float4(
lhs.x * rhs.x, lhs.y * rhs.y,
lhs.z * rhs.z, lhs.w * rhs.w);
}))
COLOSSAL_BINARY_FUNCTOR_SPECIALIZATION(
__nv_bfloat162, __nv_bfloat162, float2, BinaryOpType::kMul, DEVICE,
STMTS_WRAPPER({
CastFunctor<__nv_bfloat162, float2> cast;
BinaryOpFunctor<float2, float2, float2, BinaryOpType::kMul> mul;
float2 fa = cast(lhs);
float2 fb = cast(rhs);
return mul(fa, fb);
}))
COLOSSAL_BINARY_FUNCTOR_SPECIALIZATION(
bfloat164, bfloat164, float4_, BinaryOpType::kMul, DEVICE, STMTS_WRAPPER({
float4_ fc;
BinaryOpFunctor<__nv_bfloat162, __nv_bfloat162, float2,
BinaryOpType::kMul>
mul;
fc.x = mul(lhs.x, rhs.x);
fc.y = mul(lhs.y, rhs.y);
return fc;
}))
COLOSSAL_BINARY_FUNCTOR_SPECIALIZATION(
bfloat168, bfloat168, float8_, BinaryOpType::kMul, DEVICE, STMTS_WRAPPER({
float8_ fc;
BinaryOpFunctor<__nv_bfloat162, __nv_bfloat162, float2,
BinaryOpType::kMul>
mul;
fc.x = mul(lhs.x, rhs.x);
fc.y = mul(lhs.y, rhs.y);
fc.z = mul(lhs.z, rhs.z);
fc.w = mul(lhs.w, rhs.w);
return fc;
}))
COLOSSAL_BINARY_FUNCTOR_SPECIALIZATION(
half2, half2, float2, BinaryOpType::kMul, DEVICE, STMTS_WRAPPER({
CastFunctor<half2, float2> cast;
BinaryOpFunctor<float2, float2, float2, BinaryOpType::kMul> mul;
float2 fa = cast(lhs);
float2 fb = cast(rhs);
return mul(fa, fb);
}))
COLOSSAL_BINARY_FUNCTOR_SPECIALIZATION(
half4, half4, float4_, BinaryOpType::kMul, DEVICE, STMTS_WRAPPER({
float4_ fc;
BinaryOpFunctor<half2, half2, float2, BinaryOpType::kMul> mul;
fc.x = mul(lhs.x, rhs.x);
fc.y = mul(lhs.y, rhs.y);
return fc;
}))
COLOSSAL_BINARY_FUNCTOR_SPECIALIZATION(
half8, half8, float8_, BinaryOpType::kMul, DEVICE, STMTS_WRAPPER({
float8_ fc;
BinaryOpFunctor<half2, half2, float2, BinaryOpType::kMul> mul;
fc.x = mul(lhs.x, rhs.x);
fc.y = mul(lhs.y, rhs.y);
fc.z = mul(lhs.z, rhs.z);
fc.w = mul(lhs.w, rhs.w);
return fc;
}))
#undef COLOSSAL_BINARY_FUNCTOR_SPECIALIZATION
#undef STMTS_WRAPPER
} // namespace funcs
} // namespace cuda
} // namespace colossalAI

View File

@ -8,6 +8,7 @@
#include <functional>
#include "../utils/micros.h"
#include "../utils/vec_type_traits.h"
// Note(LiuYang): This file provides base math operation for data type
// include POD and cuda built-in type such as half and __nv_bfloat16
@ -16,39 +17,150 @@ namespace colossalAI {
namespace cuda {
namespace funcs {
using utils::bfloat164;
using utils::bfloat168;
using utils::float4_;
using utils::float8_;
using utils::half4;
using utils::half8;
template <typename From, typename To>
struct CastFunctor : public std::unary_function<From, To> {
HOSTDEVICE To operator()(From val) { return static_cast<To>(val); }
};
#define COLOSSAL_CAST_FUNCTOR_SPECIALIZATION(FROM, TO, STMT, \
#define COLOSSAL_CAST_FUNCTOR_SPECIALIZATION(FROM, TO, STMTS, \
FUNCTION_MODIFIER) \
template <> \
struct CastFunctor<FROM, TO> : public std::unary_function<FROM, TO> { \
FUNCTION_MODIFIER TO operator()(FROM val) { return STMT; } \
FUNCTION_MODIFIER TO operator()(FROM val) STMTS \
};
COLOSSAL_CAST_FUNCTOR_SPECIALIZATION(int2, float2, make_float2(val.x, val.y),
DEVICE)
COLOSSAL_CAST_FUNCTOR_SPECIALIZATION(
int2, float2, { return make_float2(val.x, val.y); }, DEVICE)
COLOSSAL_CAST_FUNCTOR_SPECIALIZATION(
float, float2, { return make_float2(val, val); }, DEVICE)
COLOSSAL_CAST_FUNCTOR_SPECIALIZATION(float, float2, make_float2(val, val),
DEVICE)
COLOSSAL_CAST_FUNCTOR_SPECIALIZATION(float, half, __float2half(val), DEVICE)
COLOSSAL_CAST_FUNCTOR_SPECIALIZATION(float, __nv_bfloat16,
__float2bfloat16(val), DEVICE)
COLOSSAL_CAST_FUNCTOR_SPECIALIZATION(float, __nv_bfloat162,
__float2bfloat162_rn(val), DEVICE)
COLOSSAL_CAST_FUNCTOR_SPECIALIZATION(float, half2, __float2half2_rn(val),
DEVICE)
COLOSSAL_CAST_FUNCTOR_SPECIALIZATION(
half2, float2, { return __half22float2(val); }, DEVICE)
COLOSSAL_CAST_FUNCTOR_SPECIALIZATION(
float2, half2, { return __float22half2_rn(val); }, DEVICE)
COLOSSAL_CAST_FUNCTOR_SPECIALIZATION(
float, half, { return __float2half_rn(val); }, DEVICE)
COLOSSAL_CAST_FUNCTOR_SPECIALIZATION(
float, half2, { return __float2half2_rn(val); }, DEVICE)
COLOSSAL_CAST_FUNCTOR_SPECIALIZATION(
half, half2, { return __half2half2(val); }, DEVICE)
COLOSSAL_CAST_FUNCTOR_SPECIALIZATION(
half, float, { return __half2float(val); }, DEVICE)
COLOSSAL_CAST_FUNCTOR_SPECIALIZATION(
float4, half4,
{
half4 dst;
dst.x = __floats2half2_rn(val.x, val.y);
dst.y = __floats2half2_rn(val.z, val.w);
return dst;
},
DEVICE)
COLOSSAL_CAST_FUNCTOR_SPECIALIZATION(
float4_, half4,
{
half4 dst;
dst.x = __float22half2_rn(val.x);
dst.y = __float22half2_rn(val.y);
return dst;
},
DEVICE)
COLOSSAL_CAST_FUNCTOR_SPECIALIZATION(
float8_, half8,
{
half8 dst;
dst.x = __float22half2_rn(val.x);
dst.y = __float22half2_rn(val.y);
dst.z = __float22half2_rn(val.z);
dst.w = __float22half2_rn(val.w);
return dst;
},
DEVICE)
COLOSSAL_CAST_FUNCTOR_SPECIALIZATION(half, float, __half2float(val), DEVICE)
COLOSSAL_CAST_FUNCTOR_SPECIALIZATION(__nv_bfloat16, float,
__bfloat162float(val), DEVICE)
COLOSSAL_CAST_FUNCTOR_SPECIALIZATION(half2, float2, __half22float2(val), DEVICE)
COLOSSAL_CAST_FUNCTOR_SPECIALIZATION(float2, half2, __float22half2_rn(val),
DEVICE)
COLOSSAL_CAST_FUNCTOR_SPECIALIZATION(half, half2, __half2half2(val), DEVICE)
COLOSSAL_CAST_FUNCTOR_SPECIALIZATION(
float, __nv_bfloat162, { return __float2bfloat162_rn(val); }, DEVICE)
COLOSSAL_CAST_FUNCTOR_SPECIALIZATION(
float, __nv_bfloat16, { return __float2bfloat16_rn(val); }, DEVICE)
COLOSSAL_CAST_FUNCTOR_SPECIALIZATION(
float4, bfloat164,
{
bfloat164 dst;
dst.x = __floats2bfloat162_rn(val.x, val.y);
dst.y = __floats2bfloat162_rn(val.z, val.w);
return dst;
},
DEVICE)
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800
COLOSSAL_CAST_FUNCTOR_SPECIALIZATION(
__nv_bfloat16, __nv_bfloat162, { return __bfloat162bfloat162(val); },
DEVICE)
COLOSSAL_CAST_FUNCTOR_SPECIALIZATION(
__nv_bfloat162, float2, { return __bfloat1622float2(val); }, DEVICE)
COLOSSAL_CAST_FUNCTOR_SPECIALIZATION(
float2, __nv_bfloat162, { return __float22bfloat162_rn(val); }, DEVICE)
COLOSSAL_CAST_FUNCTOR_SPECIALIZATION(
float4_, bfloat164,
{
bfloat164 dst;
dst.x = __float22bfloat162_rn(val.x);
dst.y = __float22bfloat162_rn(val.y);
return dst;
},
DEVICE)
COLOSSAL_CAST_FUNCTOR_SPECIALIZATION(
float8_, bfloat168,
{
bfloat168 dst;
dst.x = __float22bfloat162_rn(val.x);
dst.y = __float22bfloat162_rn(val.y);
dst.z = __float22bfloat162_rn(val.z);
dst.w = __float22bfloat162_rn(val.w);
return dst;
},
DEVICE)
#else
COLOSSAL_CAST_FUNCTOR_SPECIALIZATION(
__nv_bfloat16, __nv_bfloat162,
{
__nv_bfloat162 dst;
dst.x = val;
dst.y = val;
return dst;
},
DEVICE)
COLOSSAL_CAST_FUNCTOR_SPECIALIZATION(
__nv_bfloat162, float2,
{ return make_float2(__low2float(val), __high2float(val)); }, DEVICE)
COLOSSAL_CAST_FUNCTOR_SPECIALIZATION(
float2, __nv_bfloat162, { return __floats2bfloat162_rn(val.x, val.y); },
DEVICE)
COLOSSAL_CAST_FUNCTOR_SPECIALIZATION(
float4_, bfloat164,
{
bfloat164 dst;
dst.x = __floats2bfloat162_rn(val.x.x, val.x.y);
dst.y = __floats2bfloat162_rn(val.y.x, val.y.y);
return dst;
},
DEVICE)
COLOSSAL_CAST_FUNCTOR_SPECIALIZATION(
float8_, bfloat168,
{
bfloat168 dst;
dst.x = __floats2bfloat162_rn(val.x.x, val.x.y);
dst.y = __floats2bfloat162_rn(val.y.x, val.y.y);
dst.z = __floats2bfloat162_rn(val.z.x, val.z.y);
dst.w = __floats2bfloat162_rn(val.w.x, val.w.y);
return dst;
},
DEVICE)
#endif /* defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800 */
#undef COLOSSAL_CAST_FUNCTOR_SPECIALIZATION
} // namespace funcs

View File

@ -0,0 +1,212 @@
#pragma once
#include <cuda.h>
#include <cuda_bf16.h>
#include <cuda_fp16.h>
#include <cuda_runtime.h>
#include <float.h>
#include <functional>
#include "../funcs/cast_functor.h"
#include "../utils/micros.h"
namespace colossalAI {
namespace cuda {
namespace funcs {
enum class TernaryOpType { kFma = 0 };
template <typename LT, typename RT, typename RET, TernaryOpType op_type>
struct TernaryOpFunctor;
#define STMTS_WRAPPER(...) __VA_ARGS__
#define COLOSSAL_TERNARY_FUNCTOR_SPECIALIZATION( \
LT, RT, RET, TERNARY_OP_TYPE, FUNCTION_MODIFIER, STMTS, ARGS...) \
template <ARGS> \
struct TernaryOpFunctor<LT, RT, RET, TERNARY_OP_TYPE> { \
FUNCTION_MODIFIER RET operator()(LT a, RT b, RET c) STMTS \
};
COLOSSAL_TERNARY_FUNCTOR_SPECIALIZATION(float, float, float,
TernaryOpType::kFma, DEVICE,
STMTS_WRAPPER({
float d;
d = fma(a, b, c);
return d;
}))
COLOSSAL_TERNARY_FUNCTOR_SPECIALIZATION(float2, float2, float2,
TernaryOpType::kFma, DEVICE,
STMTS_WRAPPER({
float2 d;
d.x = fma(a.x, b.x, c.x);
d.y = fma(a.y, b.y, c.y);
return d;
}))
COLOSSAL_TERNARY_FUNCTOR_SPECIALIZATION(float, float2, float2,
TernaryOpType::kFma, DEVICE,
STMTS_WRAPPER({
float2 d;
d.x = fma(a, b.x, c.x);
d.y = fma(a, b.y, c.y);
return d;
}))
COLOSSAL_TERNARY_FUNCTOR_SPECIALIZATION(float4, float4, float4,
TernaryOpType::kFma, DEVICE,
STMTS_WRAPPER({
float4 d;
d.x = fma(a.x, b.x, c.x);
d.y = fma(a.y, b.y, c.y);
d.z = fma(a.z, b.z, c.z);
d.w = fma(a.w, b.w, c.w);
return d;
}))
COLOSSAL_TERNARY_FUNCTOR_SPECIALIZATION(float, float4, float4,
TernaryOpType::kFma, DEVICE,
STMTS_WRAPPER({
float4 d;
d.x = fma(a, b.x, c.x);
d.y = fma(a, b.y, c.y);
d.z = fma(a, b.z, c.z);
d.w = fma(a, b.w, c.w);
return d;
}))
COLOSSAL_TERNARY_FUNCTOR_SPECIALIZATION(
half, half, float, TernaryOpType::kFma, DEVICE,
STMTS_WRAPPER({ return __half2float(a) * __half2float(b) + c; }))
COLOSSAL_TERNARY_FUNCTOR_SPECIALIZATION(
half2, half2, float2, TernaryOpType::kFma, DEVICE, STMTS_WRAPPER({
CastFunctor<half2, float2> cast;
TernaryOpFunctor<float2, float2, float2, TernaryOpType::kFma> fma;
float2 fa = cast(a);
float2 fb = cast(b);
return fma(fa, fb, c);
}))
COLOSSAL_TERNARY_FUNCTOR_SPECIALIZATION(
half, half2, float2, TernaryOpType::kFma, DEVICE, STMTS_WRAPPER({
CastFunctor<half, half2> cast;
TernaryOpFunctor<half2, half2, float2, TernaryOpType::kFma> fma;
return fma(cast(a), b, c);
}))
COLOSSAL_TERNARY_FUNCTOR_SPECIALIZATION(
half4, half4, float4_, TernaryOpType::kFma, DEVICE, STMTS_WRAPPER({
float4_ fd;
TernaryOpFunctor<half2, half2, float2, TernaryOpType::kFma> fma;
fd.x = fma(a.x, b.x, c.x);
fd.y = fma(a.y, b.y, c.y);
return fd;
}))
COLOSSAL_TERNARY_FUNCTOR_SPECIALIZATION(
half, half4, float4_, TernaryOpType::kFma, DEVICE, STMTS_WRAPPER({
float4_ fd;
CastFunctor<half, half2> cast;
TernaryOpFunctor<half2, half2, float2, TernaryOpType::kFma> fma;
half2 s = cast(a);
fd.x = fma(s, b.x, c.x);
fd.y = fma(s, b.y, c.y);
return fd;
}))
COLOSSAL_TERNARY_FUNCTOR_SPECIALIZATION(
half8, half8, float8_, TernaryOpType::kFma, DEVICE, STMTS_WRAPPER({
float8_ fd;
TernaryOpFunctor<half2, half2, float2, TernaryOpType::kFma> fma;
fd.x = fma(a.x, b.x, c.x);
fd.y = fma(a.y, b.y, c.y);
fd.z = fma(a.z, b.z, c.z);
fd.w = fma(a.w, b.w, c.w);
return fd;
}))
COLOSSAL_TERNARY_FUNCTOR_SPECIALIZATION(
half, half8, float8_, TernaryOpType::kFma, DEVICE, STMTS_WRAPPER({
float8_ fd;
CastFunctor<half, half2> cast;
TernaryOpFunctor<half2, half2, float2, TernaryOpType::kFma> fma;
half2 s = cast(a);
fd.x = fma(s, b.x, c.x);
fd.y = fma(s, b.y, c.y);
fd.z = fma(s, b.z, c.z);
fd.w = fma(s, b.w, c.w);
return fd;
}))
COLOSSAL_TERNARY_FUNCTOR_SPECIALIZATION(
__nv_bfloat16, __nv_bfloat16, float, TernaryOpType::kFma, DEVICE,
STMTS_WRAPPER({ return __bfloat162float(a) * __bfloat162float(b) + c; }))
COLOSSAL_TERNARY_FUNCTOR_SPECIALIZATION(
__nv_bfloat162, __nv_bfloat162, float2, TernaryOpType::kFma, DEVICE,
STMTS_WRAPPER({
CastFunctor<__nv_bfloat162, float2> cast;
TernaryOpFunctor<float2, float2, float2, TernaryOpType::kFma> fma;
float2 fa = cast(a);
float2 fb = cast(b);
return fma(fa, fb, c);
}))
COLOSSAL_TERNARY_FUNCTOR_SPECIALIZATION(
__nv_bfloat16, __nv_bfloat162, float2, TernaryOpType::kFma, DEVICE,
STMTS_WRAPPER({
CastFunctor<__nv_bfloat16, __nv_bfloat162> cast;
TernaryOpFunctor<__nv_bfloat162, __nv_bfloat162, float2,
TernaryOpType::kFma>
fma;
return fma(cast(a), b, c);
}))
COLOSSAL_TERNARY_FUNCTOR_SPECIALIZATION(
bfloat164, bfloat164, float4_, TernaryOpType::kFma, DEVICE, STMTS_WRAPPER({
float4_ fd;
TernaryOpFunctor<__nv_bfloat162, __nv_bfloat162, float2,
TernaryOpType::kFma>
fma;
fd.x = fma(a.x, b.x, c.x);
fd.y = fma(a.y, b.y, c.y);
return fd;
}))
COLOSSAL_TERNARY_FUNCTOR_SPECIALIZATION(
__nv_bfloat16, bfloat164, float4_, TernaryOpType::kFma, DEVICE,
STMTS_WRAPPER({
float4_ fd;
CastFunctor<__nv_bfloat16, __nv_bfloat162> cast;
TernaryOpFunctor<__nv_bfloat162, __nv_bfloat162, float2,
TernaryOpType::kFma>
fma;
__nv_bfloat162 s = cast(a);
fd.x = fma(s, b.x, c.x);
fd.y = fma(s, b.y, c.y);
return fd;
}))
COLOSSAL_TERNARY_FUNCTOR_SPECIALIZATION(
bfloat168, bfloat168, float8_, TernaryOpType::kFma, DEVICE, STMTS_WRAPPER({
float8_ fd;
TernaryOpFunctor<__nv_bfloat162, __nv_bfloat162, float2,
TernaryOpType::kFma>
fma;
fd.x = fma(a.x, b.x, c.x);
fd.y = fma(a.y, b.y, c.y);
fd.z = fma(a.z, b.z, c.z);
fd.w = fma(a.w, b.w, c.w);
return fd;
}))
COLOSSAL_TERNARY_FUNCTOR_SPECIALIZATION(
__nv_bfloat16, bfloat168, float8_, TernaryOpType::kFma, DEVICE,
STMTS_WRAPPER({
float8_ fd;
CastFunctor<__nv_bfloat16, __nv_bfloat162> cast;
TernaryOpFunctor<__nv_bfloat162, __nv_bfloat162, float2,
TernaryOpType::kFma>
fma;
__nv_bfloat162 s = cast(a);
fd.x = fma(s, b.x, c.x);
fd.y = fma(s, b.y, c.y);
fd.z = fma(s, b.z, c.z);
fd.w = fma(s, b.w, c.w);
return fd;
}))
#undef COLOSSAL_TERNARY_FUNCTOR_SPECIALIZATION
#undef STMTS_WRAPPER
} // namespace funcs
} // namespace cuda
} // namespace colossalAI

View File

@ -13,9 +13,24 @@ namespace colossalAI {
namespace cuda {
namespace funcs {
template <typename T>
inline __device__ void zero(T& dst) {
constexpr int WORDS = sizeof(T) / 4;
union {
T raw;
uint32_t words[WORDS];
} tmp;
#pragma unroll
for (int ii = 0; ii < WORDS; ii++) {
tmp.words[ii] = 0u;
}
dst = tmp.raw;
}
// Note(LiuYang): As a retrieved table to check which operation is supported
// already
enum class UnaryOpType { kLog2Ceil = 0, kAbs };
enum class UnaryOpType { kLog2Ceil = 0, kAbs, kSum };
// Note(LiuYang): Implementation of common and simple unary operators should be
// placed here, otherwise, they should be placed in a new file under functors
@ -42,6 +57,25 @@ COLOSSAL_UNARY_FUNCTOR_SPECIALIZATION(int, int, UnaryOpType::kLog2Ceil,
return log2_value;
})
COLOSSAL_UNARY_FUNCTOR_SPECIALIZATION(float2, float, UnaryOpType::kSum, DEVICE,
{ return val.x + val.y; })
COLOSSAL_UNARY_FUNCTOR_SPECIALIZATION(float4, float, UnaryOpType::kSum, DEVICE,
{ return val.x + val.y + val.z + val.w; })
COLOSSAL_UNARY_FUNCTOR_SPECIALIZATION(float4_, float, UnaryOpType::kSum, DEVICE,
{
return val.x.x + val.x.y + val.y.x +
val.y.y;
})
COLOSSAL_UNARY_FUNCTOR_SPECIALIZATION(float8_, float, UnaryOpType::kSum, DEVICE,
{
return val.x.x + val.x.y + val.y.x +
val.y.y + val.z.x + val.z.y +
val.w.x + val.w.y;
})
#undef COLOSSAL_UARY_FUNCTOR_SPECIALIZATION
} // namespace funcs

View File

@ -58,6 +58,21 @@ void get_cos_and_sin(at::Tensor& cos_cache, // [max_rotary_position, head_dim]
at::Tensor& sequence_lengths, // [batch_size]
int max_seq_len_in_batch, bool is_prompts);
void flash_decoding_attention(
torch::Tensor& out, // [num_tokens, num_heads, head_size]
torch::Tensor& query, // [num_tokens, num_heads, head_size]
torch::Tensor&
key_cache, // [num_blocks, num_kv_heads, block_size, head_size]
torch::Tensor&
value_cache, // [num_blocks, num_kv_heads, block_size, head_size]
torch::Tensor& context_lens, // [num_tokens]
torch::Tensor& block_tables, // [num_tokens, max_num_blocks_per_seq]
int block_size, int max_context_len,
torch::Tensor&
tmp_out, // [num_tokens, num_heads, max_num_partitions, head_size]
torch::Tensor& tmp_out_lse, // [num_tokens, num_heads, max_num_partitions]
float scale);
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def("decode_kv_cache_memcpy", &decode_kv_cache_memcpy,
"Copy the GPU memory of kvcache during the decode stage.");
@ -81,4 +96,8 @@ PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
"In-place fused Add and RMS Normalization.");
m.def("get_cos_and_sin", &get_cos_and_sin, "Get cos and sin from the cache.");
m.def("flash_decoding_attention", &flash_decoding_attention,
"Compute the attention between an input query and the cached "
"keys/values using PagedAttention.");
}

View File

@ -1,4 +1,4 @@
/*This code from VLLM:
/*This code from FasterTransformer:
* https://github.com/NVIDIA/FasterTransformer/blob/main/src/fastertransformer/kernels/layernorm_kernels.cu
* with minor changes. */
@ -20,6 +20,32 @@ using colossalAI::cuda::funcs::BinaryOpFunctor;
using colossalAI::cuda::funcs::BinaryOpType;
using colossalAI::cuda::utils::VecTypeTrait;
#define RMSNORM_LAUNCHER(UNROLL_FACTOR, THREADDIM) \
DISPATCH_RMSNORM_FLOAT_HALF_AND_BFLOAT( \
input.element_size(), \
input.scalar_type(), \
"rms_layernorm_kernel", \
rms_layernorm_kernel<scalar_t, UNROLL_FACTOR><<<grid, THREADDIM, 0, stream>>>( \
out.data_ptr<scalar_t>(), \
input.data_ptr<scalar_t>(), \
weight.data_ptr<scalar_t>(), \
epsilon, \
num_tokens, \
hidden_size);) \
#define FUSED_ADD_RMSNORM_LAUNCHER(UNROLL_FACTOR, THREADDIM) \
DISPATCH_RMSNORM_FLOAT_HALF_AND_BFLOAT( \
input.element_size(), \
input.scalar_type(), \
"fused_add_rms_layernorm_kernel", \
fused_add_rms_layernorm_kernel<scalar_t, UNROLL_FACTOR><<<grid, THREADDIM, 0, stream>>>( \
input.data_ptr<scalar_t>(), \
residual.data_ptr<scalar_t>(), \
weight.data_ptr<scalar_t>(), \
epsilon, \
num_tokens, \
hidden_size);) \
// optimized for half and bf16
template<typename scalar_t, int unroll_factor>
__global__ void rms_layernorm_kernel(
@ -234,29 +260,9 @@ void rms_layernorm(
if (num_tokens >= 512) {
if (input.scalar_type() == at::ScalarType::Float) {
DISPATCH_RMSNORM_FLOAT_HALF_AND_BFLOAT(
input.element_size(),
input.scalar_type(),
"rms_layernorm_kernel",
rms_layernorm_kernel<scalar_t, 8><<<grid, hidden_size / 8, 0, stream>>>(
out.data_ptr<scalar_t>(),
input.data_ptr<scalar_t>(),
weight.data_ptr<scalar_t>(),
epsilon,
num_tokens,
hidden_size);)
RMSNORM_LAUNCHER(8, hidden_size / 8);
} else {
DISPATCH_RMSNORM_FLOAT_HALF_AND_BFLOAT(
input.element_size(),
input.scalar_type(),
"rms_layernorm_kernel",
rms_layernorm_kernel<scalar_t, 4><<<grid, hidden_size / 8, 0, stream>>>(
out.data_ptr<scalar_t>(),
input.data_ptr<scalar_t>(),
weight.data_ptr<scalar_t>(),
epsilon,
num_tokens,
hidden_size);)
RMSNORM_LAUNCHER(4, hidden_size / 8);
}
} else {
int unroll_factor = (hidden_size + block.x - 1) / block.x;
@ -266,56 +272,16 @@ void rms_layernorm(
}
switch (unroll_factor) {
case 1:
DISPATCH_RMSNORM_FLOAT_HALF_AND_BFLOAT(
input.element_size(),
input.scalar_type(),
"rms_layernorm_kernel",
rms_layernorm_kernel<scalar_t, 1><<<grid, block, 0, stream>>>(
out.data_ptr<scalar_t>(),
input.data_ptr<scalar_t>(),
weight.data_ptr<scalar_t>(),
epsilon,
num_tokens,
hidden_size);)
RMSNORM_LAUNCHER(1, block);
break;
case 2:
DISPATCH_RMSNORM_FLOAT_HALF_AND_BFLOAT(
input.element_size(),
input.scalar_type(),
"rms_layernorm_kernel",
rms_layernorm_kernel<scalar_t, 2><<<grid, block, 0, stream>>>(
out.data_ptr<scalar_t>(),
input.data_ptr<scalar_t>(),
weight.data_ptr<scalar_t>(),
epsilon,
num_tokens,
hidden_size);)
RMSNORM_LAUNCHER(2, block);
break;
case 4:
DISPATCH_RMSNORM_FLOAT_HALF_AND_BFLOAT(
input.element_size(),
input.scalar_type(),
"rms_layernorm_kernel",
rms_layernorm_kernel<scalar_t, 4><<<grid, block, 0, stream>>>(
out.data_ptr<scalar_t>(),
input.data_ptr<scalar_t>(),
weight.data_ptr<scalar_t>(),
epsilon,
num_tokens,
hidden_size);)
RMSNORM_LAUNCHER(4, block);
break;
case 8:
DISPATCH_RMSNORM_FLOAT_HALF_AND_BFLOAT(
input.element_size(),
input.scalar_type(),
"rms_layernorm_kernel",
rms_layernorm_kernel<scalar_t, 8><<<grid, block, 0, stream>>>(
out.data_ptr<scalar_t>(),
input.data_ptr<scalar_t>(),
weight.data_ptr<scalar_t>(),
epsilon,
num_tokens,
hidden_size);)
RMSNORM_LAUNCHER(8, block);
break;
default:
AT_ERROR("unroll_factor must be 1, 2, 4 or 8");
@ -338,29 +304,9 @@ void fused_add_rms_layernorm(
if (num_tokens >= 512) {
if (input.scalar_type() == at::ScalarType::Float) {
DISPATCH_RMSNORM_FLOAT_HALF_AND_BFLOAT(
input.element_size(),
input.scalar_type(),
"fused_add_rms_layernorm_kernel",
fused_add_rms_layernorm_kernel<scalar_t, 8><<<grid, hidden_size / 8, 0, stream>>>(
input.data_ptr<scalar_t>(),
residual.data_ptr<scalar_t>(),
weight.data_ptr<scalar_t>(),
epsilon,
num_tokens,
hidden_size);)
FUSED_ADD_RMSNORM_LAUNCHER(8, hidden_size / 8);
} else {
DISPATCH_RMSNORM_FLOAT_HALF_AND_BFLOAT(
input.element_size(),
input.scalar_type(),
"fused_add_rms_layernorm_kernel",
fused_add_rms_layernorm_kernel<scalar_t, 4><<<grid, hidden_size / 8, 0, stream>>>(
input.data_ptr<scalar_t>(),
residual.data_ptr<scalar_t>(),
weight.data_ptr<scalar_t>(),
epsilon,
num_tokens,
hidden_size);)
FUSED_ADD_RMSNORM_LAUNCHER(4, hidden_size / 8);
}
} else {
int unroll_factor = (hidden_size + block.x - 1) / block.x;
@ -370,56 +316,16 @@ void fused_add_rms_layernorm(
}
switch (unroll_factor) {
case 1:
DISPATCH_RMSNORM_FLOAT_HALF_AND_BFLOAT(
input.element_size(),
input.scalar_type(),
"fused_add_rms_layernorm_kernel",
fused_add_rms_layernorm_kernel<scalar_t, 1><<<grid, block, 0, stream>>>(
input.data_ptr<scalar_t>(),
residual.data_ptr<scalar_t>(),
weight.data_ptr<scalar_t>(),
epsilon,
num_tokens,
hidden_size);)
FUSED_ADD_RMSNORM_LAUNCHER(1, block);
break;
case 2:
DISPATCH_RMSNORM_FLOAT_HALF_AND_BFLOAT(
input.element_size(),
input.scalar_type(),
"fused_add_rms_layernorm_kernel",
fused_add_rms_layernorm_kernel<scalar_t, 2><<<grid, block, 0, stream>>>(
input.data_ptr<scalar_t>(),
residual.data_ptr<scalar_t>(),
weight.data_ptr<scalar_t>(),
epsilon,
num_tokens,
hidden_size);)
FUSED_ADD_RMSNORM_LAUNCHER(2, block);
break;
case 4:
DISPATCH_RMSNORM_FLOAT_HALF_AND_BFLOAT(
input.element_size(),
input.scalar_type(),
"fused_add_rms_layernorm_kernel",
fused_add_rms_layernorm_kernel<scalar_t, 4><<<grid, block, 0, stream>>>(
input.data_ptr<scalar_t>(),
residual.data_ptr<scalar_t>(),
weight.data_ptr<scalar_t>(),
epsilon,
num_tokens,
hidden_size);)
FUSED_ADD_RMSNORM_LAUNCHER(4, block);
break;
case 8:
DISPATCH_RMSNORM_FLOAT_HALF_AND_BFLOAT(
input.element_size(),
input.scalar_type(),
"fused_add_rms_layernorm_kernel",
fused_add_rms_layernorm_kernel<scalar_t, 8><<<grid, block, 0, stream>>>(
input.data_ptr<scalar_t>(),
residual.data_ptr<scalar_t>(),
weight.data_ptr<scalar_t>(),
epsilon,
num_tokens,
hidden_size);)
FUSED_ADD_RMSNORM_LAUNCHER(8, block);
break;
default:
AT_ERROR("unroll_factor must be 1, 2, 4 or 8");

View File

@ -11,9 +11,45 @@ namespace colossalAI {
namespace cuda {
namespace utils {
struct bfloat164 {
__nv_bfloat162 x;
__nv_bfloat162 y;
};
struct bfloat168 {
__nv_bfloat162 x;
__nv_bfloat162 y;
__nv_bfloat162 z;
__nv_bfloat162 w;
};
struct half4 {
half2 x;
half2 y;
};
struct half8 {
half2 x;
half2 y;
half2 z;
half2 w;
};
struct float4_ {
float2 x;
float2 y;
};
struct float8_ {
float2 x;
float2 y;
float2 z;
float2 w;
};
template <typename T, int VecSize>
struct VecTypeTrait {};
template <typename T>
struct FloatVecTypeTrait {};
#define VEC_TYPE_TRAITS_SPECIALIZATION(T, VEC_SIZE, VECT, ARGS...) \
template <ARGS> \
struct VecTypeTrait<T, VEC_SIZE> { \
@ -31,13 +67,36 @@ VEC_TYPE_TRAITS_SPECIALIZATION(at::Half, 4, float2)
VEC_TYPE_TRAITS_SPECIALIZATION(at::Half, 8, float4)
VEC_TYPE_TRAITS_SPECIALIZATION(float, 2, float2)
VEC_TYPE_TRAITS_SPECIALIZATION(float, 4, float4)
VEC_TYPE_TRAITS_SPECIALIZATION(float, 8, float4)
VEC_TYPE_TRAITS_SPECIALIZATION(float, 8, float8_)
VEC_TYPE_TRAITS_SPECIALIZATION(uint8_t, 2, half)
VEC_TYPE_TRAITS_SPECIALIZATION(uint8_t, 4, half2)
VEC_TYPE_TRAITS_SPECIALIZATION(uint8_t, 8, float2)
VEC_TYPE_TRAITS_SPECIALIZATION(__nv_bfloat16, 2, __nv_bfloat162);
VEC_TYPE_TRAITS_SPECIALIZATION(__nv_bfloat16, 4, bfloat164);
VEC_TYPE_TRAITS_SPECIALIZATION(__nv_bfloat16, 8, bfloat168);
VEC_TYPE_TRAITS_SPECIALIZATION(half, 2, half2);
VEC_TYPE_TRAITS_SPECIALIZATION(half, 4, half4);
VEC_TYPE_TRAITS_SPECIALIZATION(half, 8, half8);
#undef VEC_TYPE_TRAITS_SPECIALIZATION
#define FLOATVEC_TYPE_TRAITS_SPECIALIZATION(T, FLOATT, ARGS...) \
template <ARGS> \
struct FloatVecTypeTrait<T> { \
using Type = FLOATT; \
};
FLOATVEC_TYPE_TRAITS_SPECIALIZATION(float2, float2)
FLOATVEC_TYPE_TRAITS_SPECIALIZATION(float4, float4)
FLOATVEC_TYPE_TRAITS_SPECIALIZATION(__nv_bfloat162, float2);
FLOATVEC_TYPE_TRAITS_SPECIALIZATION(bfloat164, float4_);
FLOATVEC_TYPE_TRAITS_SPECIALIZATION(bfloat168, float8_);
FLOATVEC_TYPE_TRAITS_SPECIALIZATION(half2, float2);
FLOATVEC_TYPE_TRAITS_SPECIALIZATION(half4, float4_);
FLOATVEC_TYPE_TRAITS_SPECIALIZATION(half8, float8_);
#undef FLOATVEC_TYPE_TRAITS_SPECIALIZATION
} // namespace utils
} // namespace cuda
} // namespace colossalAI

View File

@ -17,6 +17,7 @@ class InferenceOpsCudaExtension(_CudaExtension):
"cuda/activation_kernel.cu",
"cuda/rms_layernorm_kernel.cu",
"cuda/get_cos_and_sin_kernel.cu",
"cuda/flash_decoding_attention_kernel.cu",
]
]
return ret

View File

@ -0,0 +1,274 @@
from itertools import product
import numpy as np
import pytest
import torch
from colossalai.kernel.kernel_loader import InferenceOpsLoader
from colossalai.utils import get_current_device
inference_ops = InferenceOpsLoader().load()
from tests.test_infer.test_ops.triton.kernel_utils import (
convert_kv_unpad_to_padded,
create_attention_mask,
generate_caches_and_block_tables_v2,
generate_caches_and_block_tables_vllm,
torch_attn_ref,
)
q_len = 1
def prepare_data(
BATCH_SIZE: int,
HEAD_SIZE: int,
NUM_ATTN_HEADS: int,
NUM_KV_HEADS: int,
MAX_SEQ_LEN: int,
dtype=torch.float16,
device="cuda",
):
# Use the provided maximum sequence length for each sequence when testing with teh same context length,
# otherwise generate random context lengths.
# returns
# q [BATCH_SIZE, NUM_ATTN_HEADS, HEAD_SIZE]
# k_unpad/v_unpad [num_tokens, NUM_KV_HEADS, HEAD_SIZE]
kv_lengths = torch.randint(low=1, high=MAX_SEQ_LEN, size=(BATCH_SIZE,), dtype=torch.int32, device=device)
num_tokens = torch.sum(kv_lengths).item()
q_size = (BATCH_SIZE, q_len, NUM_ATTN_HEADS, HEAD_SIZE)
q = torch.empty(size=q_size, dtype=dtype, device=device).normal_(mean=0.0, std=0.5).transpose(1, 2)
kv_size = (num_tokens, 2 * NUM_KV_HEADS, HEAD_SIZE)
kv_unpad = torch.empty(size=kv_size, dtype=dtype, device=device).normal_(mean=0.0, std=0.5)
k_unpad, v_unpad = torch.split(kv_unpad, [NUM_KV_HEADS, NUM_KV_HEADS], dim=-2)
return q, k_unpad, v_unpad, kv_lengths
def numpy_allclose(x, y, rtol, atol):
x_numpy = x.detach().cpu().numpy()
y_numpy = y.detach().cpu().numpy()
np.testing.assert_allclose(x_numpy, y_numpy, rtol=rtol, atol=atol)
@pytest.mark.parametrize("BATCH_SIZE", [1, 4, 7, 32])
@pytest.mark.parametrize("BLOCK_SIZE", [8, 16, 32])
@pytest.mark.parametrize("MAX_NUM_BLOCKS_PER_SEQ", [1, 8, 32])
@pytest.mark.parametrize("HEAD_SIZE", [64, 128])
@pytest.mark.parametrize("NUM_ATTN_HEADS", [16])
@pytest.mark.parametrize("KV_GROUP_NUM", [1, 2, 16])
@pytest.mark.parametrize("dtype", [torch.float16, torch.float32])
def test_flash_decoding_attention(
BATCH_SIZE, BLOCK_SIZE, MAX_NUM_BLOCKS_PER_SEQ, HEAD_SIZE, NUM_ATTN_HEADS, KV_GROUP_NUM, dtype
):
torch.manual_seed(123)
torch.cuda.empty_cache()
torch.cuda.synchronize()
torch.cuda.reset_peak_memory_stats()
NUM_KV_HEADS = NUM_ATTN_HEADS // KV_GROUP_NUM
assert isinstance(NUM_KV_HEADS, int) and NUM_KV_HEADS > 0, "Invalid number of kv heads."
MAX_SEQ_LEN = BLOCK_SIZE * MAX_NUM_BLOCKS_PER_SEQ
device = get_current_device()
q, k_unpad, v_unpad, kv_seq_lengths = prepare_data(
BATCH_SIZE, HEAD_SIZE, NUM_ATTN_HEADS, NUM_KV_HEADS, MAX_SEQ_LEN, dtype, device
)
k_cache, v_cache, block_tables = generate_caches_and_block_tables_v2(
k_unpad, v_unpad, kv_seq_lengths, BATCH_SIZE, MAX_NUM_BLOCKS_PER_SEQ, BLOCK_SIZE, dtype, device
)
block_tables = block_tables.to(device=device)
max_seq_len_across_batch = kv_seq_lengths.max().item()
kv_max_split_num = (max_seq_len_across_batch + BLOCK_SIZE - 1) // BLOCK_SIZE
output = torch.empty((BATCH_SIZE, NUM_ATTN_HEADS, HEAD_SIZE), dtype=dtype, device=device)
sm_scale = 1.0 / (HEAD_SIZE**0.5)
k_torch = convert_kv_unpad_to_padded(k_unpad, kv_seq_lengths, BATCH_SIZE, max_seq_len_across_batch)
v_torch = convert_kv_unpad_to_padded(v_unpad, kv_seq_lengths, BATCH_SIZE, max_seq_len_across_batch)
torch_padding_mask = create_attention_mask(kv_seq_lengths, BATCH_SIZE, q_len, max_seq_len_across_batch, device)
mid_output = torch.empty(
size=(BATCH_SIZE, NUM_ATTN_HEADS, kv_max_split_num, HEAD_SIZE), dtype=torch.float32, device=device
)
mid_output_lse = torch.empty(
size=(BATCH_SIZE, NUM_ATTN_HEADS, kv_max_split_num), dtype=torch.float32, device=device
)
if dtype == torch.float16:
rtol = 1e-3
atol = 1e-3
high_precision_q = q.to(torch.float32)
high_precision_k_torch = k_torch.to(torch.float32)
high_precision_v_torch = v_torch.to(torch.float32)
out_ref = torch_attn_ref(
high_precision_q,
high_precision_k_torch,
high_precision_v_torch,
torch_padding_mask,
BATCH_SIZE,
q_len,
max_seq_len_across_batch,
NUM_ATTN_HEADS,
NUM_KV_HEADS,
HEAD_SIZE,
).to(torch.float16)
else:
rtol = 1e-5
atol = 1e-7
out_ref = torch_attn_ref(
q,
k_torch,
v_torch,
torch_padding_mask,
BATCH_SIZE,
q_len,
max_seq_len_across_batch,
NUM_ATTN_HEADS,
NUM_KV_HEADS,
HEAD_SIZE,
)
inference_ops.flash_decoding_attention(
output,
q.squeeze(2),
k_cache,
v_cache,
kv_seq_lengths,
block_tables,
BLOCK_SIZE,
max_seq_len_across_batch,
mid_output,
mid_output_lse,
sm_scale,
)
numpy_allclose(out_ref, output, rtol=rtol, atol=atol)
@pytest.mark.parametrize("BATCH_SIZE", [1, 4, 7, 32])
@pytest.mark.parametrize("BLOCK_SIZE", [8, 16, 32])
@pytest.mark.parametrize("MAX_NUM_BLOCKS_PER_SEQ", [1, 8, 32])
@pytest.mark.parametrize("HEAD_SIZE", [64, 128])
@pytest.mark.parametrize("NUM_ATTN_HEADS", [16])
@pytest.mark.parametrize("KV_GROUP_NUM", [1, 2, 16])
@pytest.mark.parametrize("dtype", [torch.float16, torch.float32])
def test_vllm_flash_decoding_attention(
BATCH_SIZE, BLOCK_SIZE, MAX_NUM_BLOCKS_PER_SEQ, HEAD_SIZE, NUM_ATTN_HEADS, KV_GROUP_NUM, dtype
):
torch.manual_seed(123)
torch.cuda.empty_cache()
torch.cuda.synchronize()
torch.cuda.reset_peak_memory_stats()
try:
from vllm._C import ops as vllm_ops
except ImportError:
raise ImportError("Please install vllm from https://github.com/vllm-project/vllm")
NUM_KV_HEADS = NUM_ATTN_HEADS // KV_GROUP_NUM
assert isinstance(NUM_KV_HEADS, int) and NUM_KV_HEADS > 0, "Invalid number of kv heads."
MAX_SEQ_LEN = BLOCK_SIZE * MAX_NUM_BLOCKS_PER_SEQ
device = get_current_device()
q, k_unpad, v_unpad, kv_seq_lengths = prepare_data(
BATCH_SIZE, HEAD_SIZE, NUM_ATTN_HEADS, NUM_KV_HEADS, MAX_SEQ_LEN, dtype, device
)
k_cache, v_cache, block_tables = generate_caches_and_block_tables_vllm(
k_unpad, v_unpad, kv_seq_lengths, BATCH_SIZE, MAX_NUM_BLOCKS_PER_SEQ, BLOCK_SIZE, dtype, device
)
block_tables = block_tables.to(device=device)
max_seq_len_across_batch = kv_seq_lengths.max().item()
output = torch.empty((BATCH_SIZE, NUM_ATTN_HEADS, HEAD_SIZE), dtype=dtype, device=device)
sm_scale = 1.0 / (HEAD_SIZE**0.5)
k_torch = convert_kv_unpad_to_padded(k_unpad, kv_seq_lengths, BATCH_SIZE, max_seq_len_across_batch)
v_torch = convert_kv_unpad_to_padded(v_unpad, kv_seq_lengths, BATCH_SIZE, max_seq_len_across_batch)
torch_padding_mask = create_attention_mask(kv_seq_lengths, BATCH_SIZE, q_len, max_seq_len_across_batch, device)
if dtype == torch.float16:
rtol = 1e-3
atol = 1e-3
high_precision_q = q.to(torch.float32)
high_precision_k_torch = k_torch.to(torch.float32)
high_precision_v_torch = v_torch.to(torch.float32)
out_ref = torch_attn_ref(
high_precision_q,
high_precision_k_torch,
high_precision_v_torch,
torch_padding_mask,
BATCH_SIZE,
q_len,
max_seq_len_across_batch,
NUM_ATTN_HEADS,
NUM_KV_HEADS,
HEAD_SIZE,
).to(torch.float16)
else:
rtol = 1e-5
atol = 1e-7
out_ref = torch_attn_ref(
q,
k_torch,
v_torch,
torch_padding_mask,
BATCH_SIZE,
q_len,
max_seq_len_across_batch,
NUM_ATTN_HEADS,
NUM_KV_HEADS,
HEAD_SIZE,
)
alibi_slopes = None
vllm_ops.paged_attention_v1(
output,
q.squeeze(2),
k_cache,
v_cache,
NUM_KV_HEADS,
sm_scale,
block_tables,
kv_seq_lengths,
BLOCK_SIZE,
max_seq_len_across_batch,
alibi_slopes,
"auto",
)
numpy_allclose(out_ref, output, rtol=rtol, atol=atol)
if __name__ == "__main__":
BATCH_SIZE = [1, 4, 7, 32]
BLOCK_SIZE = [8, 16, 32]
MAX_NUM_BLOCKS_PER_SEQ = [1, 8, 32]
HEAD_SIZE = [64, 128]
NUM_ATTN_HEADS = [16]
KV_GROUP_NUM = [1, 2, 16]
DTYPE = [torch.float16, torch.float32]
test_combinations = list(
product(BATCH_SIZE, BLOCK_SIZE, MAX_NUM_BLOCKS_PER_SEQ, HEAD_SIZE, NUM_ATTN_HEADS, KV_GROUP_NUM, DTYPE)
)
for (
batch_size,
block_size,
max_num_blocks_per_seq,
head_size,
num_attn_heads,
kv_group_num,
dtype,
) in test_combinations:
test_flash_decoding_attention(
batch_size, block_size, max_num_blocks_per_seq, head_size, num_attn_heads, kv_group_num, dtype
)

View File

@ -150,6 +150,51 @@ def mock_alloc_block_table_and_kvcache_v2(
return block_tables
def mock_alloc_block_table_and_kvcache_vllm(
k: torch.Tensor,
v: torch.Tensor,
k_cache: torch.Tensor,
v_cache: torch.Tensor,
context_lengths: torch.Tensor,
num_seqs: int,
max_num_blocks_per_seq: int,
block_size: int,
) -> torch.Tensor:
"""Allocate block tables based on provided context lengths; and copy KV to blocked KV Cache."""
block_id = 0
block_tables = torch.full(size=(num_seqs, max_num_blocks_per_seq), fill_value=-1, dtype=torch.int32)
num_tokens_processed = 0
_, num_kv_heads, head_dim = k.shape
x = 16 // torch.tensor([], dtype=k.dtype).element_size()
for i, seq_len in enumerate(context_lengths.tolist()):
right_bound = (seq_len + block_size - 1) // block_size # open bound
block_tables[i, :right_bound] = torch.arange(block_id, block_id + right_bound, dtype=torch.int32)
# Manually fill kv caches by copying from k and v
for i in range(right_bound):
if i == right_bound - 1:
allocated_locs = seq_len % block_size or block_size
else:
allocated_locs = block_size
# [block_size, num_kv_heads, head_dim/x, x]->[num_kv_heads, head_dim/x, block_size,x]
k_block = (
k[num_tokens_processed : num_tokens_processed + allocated_locs, :, :]
.reshape(allocated_locs, num_kv_heads, head_dim // x, x)
.permute(1, 2, 0, 3)
)
# [block_size, num_kv_heads, head_dim]->[num_kv_heads, head_dim, block_size]
v_block = v[num_tokens_processed : num_tokens_processed + allocated_locs, :, :].permute(1, 2, 0)
k_cache[block_id, :, :, :allocated_locs, :] = k_block
v_cache[block_id, :, :, :allocated_locs] = v_block
num_tokens_processed += allocated_locs
block_id += 1
return block_tables
def mock_alloc_single_token(block_tables: torch.Tensor, context_lengths: torch.Tensor, block_size: int) -> None:
# Allocate 1 token on the block table for each seqs in block tables.
# It won't change provided context_lengths.
@ -206,6 +251,26 @@ def generate_caches_and_block_tables_v2(
return k_cache, v_cache, block_tables
def generate_caches_and_block_tables_vllm(
k_unpad, v_unpad, kv_lengths, bsz, max_num_blocks_per_seq, block_size, dtype=torch.float16, device="cuda"
) -> Tuple[torch.Tensor, ...]:
# Mock generation of k/v blocked caches and block tables from providied kv unpad and seq lengths
# k_unpad/v_unpad [num_total_tokens, num_kv_heads, head_dim]
_, num_kv_heads, head_dim = k_unpad.shape
x = 16 // torch.tensor([], dtype=dtype).element_size()
k_cache_shape = (bsz * max_num_blocks_per_seq, num_kv_heads, head_dim // x, block_size, x)
v_cache_shape = (bsz * max_num_blocks_per_seq, num_kv_heads, head_dim, block_size)
k_cache = torch.zeros(size=k_cache_shape, dtype=dtype, device=device)
v_cache = torch.zeros(size=v_cache_shape, dtype=dtype, device=device)
# Mock allocation on block tables as well as blocked kv caches
block_tables = mock_alloc_block_table_and_kvcache_vllm(
k_unpad, v_unpad, k_cache, v_cache, kv_lengths, bsz, max_num_blocks_per_seq, block_size
)
return k_cache, v_cache, block_tables
def convert_kv_unpad_to_padded(
k_unpad: torch.Tensor, kv_seq_lengths: torch.Tensor, bsz: int, max_seq_len: int
) -> torch.Tensor: