[fx] add torchaudio test (#1369)

* [fx]add torchaudio test

* [fx]add torchaudio test

* [fx] add torchaudio test

* [fx] add torchaudio test

* [fx] add torchaudio test

* [fx] add torchaudio test

* [fx] add torchaudio test

* [fx] add torchaudio test and test patches

* Delete ~

* [fx] add patches and patches test

* [fx] add patches and patches test

* [fx] fix patches

* [fx] fix rnn patches

* [fx] fix rnn patches

* [fx] fix rnn patches

* [fx] fix rnn patches

* [fx] merge upstream

* [fx] fix import errors
pull/1377/head
Super Daniel 2022-07-27 11:03:14 +08:00 committed by GitHub
parent fb6f085907
commit be229217ce
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
18 changed files with 609 additions and 16 deletions

View File

@ -108,6 +108,27 @@ def torch_cat(tensors, dim=None, axis=None, *, out=None):
return torch.empty(final_shape, device="meta")
@meta_patched_function.register(torch.repeat_interleave)
def torch_repeat_interleave(input, repeats, dim=None, output_size=None):
assert isinstance(repeats, int) or isinstance(repeats, torch.Tensor), \
"Argument 'repeats' should be of type 'torch.Tensor' or 'int'"
shape = list(input.shape) if dim is not None else [input.numel()]
dim = dim if dim is not None else 0
dim = input.dim() + dim if dim < 0 else dim
if isinstance(repeats, int):
shape[dim] = shape[dim] * repeats
elif isinstance(repeats, torch.Tensor):
shape[dim] = repeats.sum()
return torch.empty(shape, device="meta")
@meta_patched_function.register(torch.Tensor.repeat_interleave)
def torch_tensor_repeat_interleave(self, repeats, dim=None, *, output_size=None):
return torch_repeat_interleave(self, repeats, dim, output_size)
@meta_patched_function.register(torch.roll)
def torch_roll(input, shifts, dims=None):
return torch.empty(input.shape, device='meta')

View File

@ -3,4 +3,5 @@ from .convolution import *
from .embedding import *
from .linear import *
from .normalization import *
from .pooling import *
from .pooling import *
from .rnn import *

View File

@ -7,5 +7,6 @@ from ..registry import meta_patched_module
@meta_patched_module.register(torch.nn.GELU)
@meta_patched_module.register(torch.nn.Tanh)
@meta_patched_module.register(torch.nn.ReLU6)
@meta_patched_module.register(torch.nn.PReLU)
def torch_nn_non_linear_act(self, input):
return torch.empty(input.shape, device='meta')

View File

@ -55,3 +55,60 @@ def torch_nn_conv3d(self, input):
w_out,
)
return torch.empty(result_shape, device='meta')
@meta_patched_module.register(torch.nn.ConvTranspose1d)
def torch_nn_convtranspose1d(self, input):
# the output shape is calculated using the formula stated
# at https://pytorch.org/docs/stable/generated/torch.nn.ConvTranspose1d.html
l_in = input.shape[-1]
c_out = self.out_channels
l_out = math.floor((l_in - 1) * self.stride[0] - 2 * self.padding[0] +
self.dilation[0] * (self.kernel_size[0] - 1) +
self.output_padding[0] + 1)
result_shape = input.shape[:-2] + (
c_out,
l_out,
)
return torch.empty(result_shape, device='meta')
@meta_patched_module.register(torch.nn.ConvTranspose2d)
def torch_nn_convtranspose2d(self, input):
# the output shape is calculated using the formula stated
# at https://pytorch.org/docs/stable/generated/torch.nn.ConvTranspose2d.html
h_in, w_in = input.shape[-2:]
c_out = self.out_channels
h_out = math.floor((h_in - 1) * self.stride[0] - 2 * self.padding[0] +
self.dilation[0] * (self.kernel_size[0] - 1) +
self.output_padding[0] + 1)
w_out = math.floor((w_in - 1) * self.stride[1] - 2 * self.padding[1] +
self.dilation[1] * (self.kernel_size[1] - 1) +
self.output_padding[1] + 1)
result_shape = input.shape[:-3] + (
c_out,
h_out,
w_out,
)
return torch.empty(result_shape, device='meta')
@meta_patched_module.register(torch.nn.ConvTranspose3d)
def torch_nn_convtranspose3d(self, input):
# the output shape is calculated using the formula stated
# at https://pytorch.org/docs/stable/generated/torch.nn.ConvTranspose3d.html
d_in, h_in, w_in = input.shape[-3:]
c_out = self.out_channels
d_out = math.floor((d_in - 1) * self.stride[0] - 2 * self.padding[0] +
self.dilation[0] * (self.kernel_size[0] - 1) +
self.output_padding[0] + 1)
h_out = math.floor((h_in - 1) * self.stride[1] - 2 * self.padding[1] +
self.dilation[1] * (self.kernel_size[1] - 1) +
self.output_padding[1] + 1)
w_out = math.floor((w_in - 1) * self.stride[2] - 2 * self.padding[2] +
self.dilation[2] * (self.kernel_size[2] - 1) +
self.output_padding[2] + 1)
result_shape = input.shape[:-4] + (
c_out,
d_out,
h_out,
w_out,
)
return torch.empty(result_shape, device='meta')

View File

@ -6,4 +6,4 @@ from ..registry import meta_patched_module
def torch_nn_linear(self, input):
last_dim = input.shape[-1]
assert last_dim == self.in_features, f'Expected hidden size {self.in_features} but got {last_dim} for the torch.nn.Linear patch'
return torch.empty(input.shape[:-1] + (self.out_features,), device="meta")
return torch.empty(input.shape[:-1] + (self.out_features,), device="meta")

View File

@ -0,0 +1,14 @@
import torch
from ..registry import meta_patched_module
from typing import Optional
@meta_patched_module.register(torch.nn.GRU)
@meta_patched_module.register(torch.nn.RNN)
def torch_nn_rnn(self, input, hx):
assert input.shape[
-1] == self.input_size, f'Expected input to have input size {self.input_size} but got {input.shape[-1]} for the torch.nn.RNN patch'
assert hx.shape[
-1] == self.hidden_size, f'Expected hx to have hidden size {self.hidden_size} but got {hx.shape[-1]} for the torch.nn.RNN patch'
d = 2 if self.bidirectional else 1
return torch.empty(input.shape[:-1] + (self.hidden_size * d,), device="meta"), hx

View File

@ -27,7 +27,7 @@ def save_checkpoint(dire: str,
# save the dist context about the tensors in a new dict, while still maintain the original dict.
for k, v in model_state.items():
if isinstance(v, ColoTensor):
gather_tensor(v) # gather shared tensors to rank0
gather_tensor(v) # gather shared tensors to rank0
# don't recover tensors in rank0, since the dict is only a copy of model
if rank == 0:

View File

@ -34,7 +34,7 @@ def gather_tensor(colo_tensor: ColoTensor) -> None:
dist.barrier()
if dist.get_rank() == 0:
setattr(colo_tensor, 'save_ready', True) # set saving signitrue
setattr(colo_tensor, 'save_ready', True) # set saving signitrue
def scatter_tensor(colo_tensor: ColoTensor, dist_spec: _DistSpec) -> None:
@ -54,9 +54,8 @@ def scatter_tensor(colo_tensor: ColoTensor, dist_spec: _DistSpec) -> None:
if dist.get_rank() == 0:
colo_tensor.set_dist_spec(dist_spec)
else:
rep_tensor = ColoTensor(entire_data, ColoTensorSpec(
pg=colo_tensor.get_process_group(),
compute_attr=colo_tensor.compute_spec))
rep_tensor = ColoTensor(
entire_data, ColoTensorSpec(pg=colo_tensor.get_process_group(), compute_attr=colo_tensor.compute_spec))
rep_tensor.set_dist_spec(dist_spec)
with torch.no_grad():
colo_tensor.data.copy_(rep_tensor.data)

View File

@ -3,4 +3,5 @@ torchvision
transformers
timm
titans
torchaudio
torchrec

View File

@ -100,7 +100,7 @@ def get_version():
version += f'+torch{torch_version}cu{cuda_version}'
return version
if build_cuda_ext:
try:
import torch
@ -115,7 +115,7 @@ if build_cuda_ext:
except ImportError:
print('torch is not found. CUDA extension will not be installed')
build_cuda_ext = False
if build_cuda_ext:
build_cuda_ext = check_cuda_availability(CUDA_HOME) and check_cuda_torch_binary_vs_bare_metal(CUDA_HOME)

View File

@ -4,7 +4,12 @@ from colossalai.fx.tracer.meta_patch import patched_module
def _run(data, module, patch_fn):
try:
output = patch_fn(module, data)
if isinstance(data, dict):
output = patch_fn(module, **data)
if isinstance(data, tuple) or isinstance(data, list):
output = patch_fn(module, *data)
else:
output = patch_fn(module, data)
return output
except Exception as e:
return e
@ -17,8 +22,13 @@ def _assert_output_shape(data, module, patch_fn, expect_exception, output_shape)
assert isinstance(output, AssertionError)
else:
assert not isinstance(output, Exception)
assert output.is_meta
assert output.shape == output_shape
if isinstance(output, tuple):
for item, shape in zip(output, output_shape):
assert item.is_meta
assert item.shape == shape
else:
assert output.is_meta
assert output.shape == output_shape
def test_linear():
@ -27,11 +37,27 @@ def test_linear():
module = torch.nn.Linear(4, 2)
_assert_output_shape(data, module, patched_module.torch_nn_linear, False, torch.Size([2, 2]))
# Test if the linear patch can catch exception when dimension does not match
# test if the linear patch can catch exception when dimension does not match
data = torch.rand(2, 2, device='meta')
_assert_output_shape(data, module, patched_module.torch_nn_linear, True, None)
def test_rnn():
# test rnn patch can produce the meta output with correct shape
data = (torch.randn(5, 3, 10), torch.randn(2, 3, 20))
module = torch.nn.RNN(10, 20, 2)
output, hn = module(*data)
meta_data = (torch.randn(5, 3, 10).to('meta'), torch.randn(2, 3, 20).to('meta'))
_assert_output_shape(meta_data, module, patched_module.torch_nn_rnn, False, (output.shape, hn.shape))
# test if the rnn patch can catch exception when dimension does not match
data = (torch.randn(5, 3, 10), torch.randn(2, 3, 20))
module = torch.nn.RNN(10, 20, 2)
output, hn = module(*data)
meta_data = (torch.randn(5, 3, 1).to('meta'), torch.randn(2, 3, 20).to('meta'))
_assert_output_shape(meta_data, module, patched_module.torch_nn_rnn, True, None)
def test_embedding():
data = torch.rand(2, 4, device='meta')
@ -146,7 +172,7 @@ def test_conv1d():
def test_conv2d():
# test conv 1d
# test conv 2d
data = torch.rand(2, 3, 4, 4)
conv2d = torch.nn.Conv2d(in_channels=3, out_channels=4, kernel_size=2)
materialized_output = conv2d(data)
@ -187,7 +213,7 @@ def test_conv2d():
def test_conv3d():
# test conv 1d
# test conv 3d
data = torch.rand(2, 3, 4, 4, 4)
conv3d = torch.nn.Conv3d(in_channels=3, out_channels=4, kernel_size=2)
materialized_output = conv3d(data)
@ -227,6 +253,75 @@ def test_conv3d():
output_shape=materialized_output.shape)
def test_conv_transpose1d():
# test conv transpose1d
data = torch.rand(2, 3, 4)
convtrans1d = torch.nn.ConvTranspose1d(in_channels=3, out_channels=4, kernel_size=2)
materialized_output = convtrans1d(data)
meta_data = data.to('meta')
_assert_output_shape(data=meta_data,
module=convtrans1d,
patch_fn=patched_module.torch_nn_convtranspose1d,
expect_exception=False,
output_shape=materialized_output.shape)
convtrans1d = torch.nn.ConvTranspose1d(in_channels=3, out_channels=4, kernel_size=2, padding=1)
materialized_output = convtrans1d(data)
meta_data = data.to('meta')
_assert_output_shape(data=meta_data,
module=convtrans1d,
patch_fn=patched_module.torch_nn_convtranspose1d,
expect_exception=False,
output_shape=materialized_output.shape)
def test_conv_transpose2d():
# test conv transpose2d
data = torch.rand(2, 3, 4, 4)
convtrans2d = torch.nn.ConvTranspose2d(in_channels=3, out_channels=4, kernel_size=2)
materialized_output = convtrans2d(data)
meta_data = data.to('meta')
_assert_output_shape(data=meta_data,
module=convtrans2d,
patch_fn=patched_module.torch_nn_convtranspose2d,
expect_exception=False,
output_shape=materialized_output.shape)
convtrans2d = torch.nn.ConvTranspose2d(in_channels=3, out_channels=4, kernel_size=2, padding=1)
materialized_output = convtrans2d(data)
meta_data = data.to('meta')
_assert_output_shape(data=meta_data,
module=convtrans2d,
patch_fn=patched_module.torch_nn_convtranspose2d,
expect_exception=False,
output_shape=materialized_output.shape)
def test_conv_transpose3d():
# test conv transpose2d
data = torch.rand(2, 3, 4, 4, 4)
convtrans3d = torch.nn.ConvTranspose3d(in_channels=3, out_channels=4, kernel_size=2)
materialized_output = convtrans3d(data)
meta_data = data.to('meta')
_assert_output_shape(data=meta_data,
module=convtrans3d,
patch_fn=patched_module.torch_nn_convtranspose3d,
expect_exception=False,
output_shape=materialized_output.shape)
convtrans3d = torch.nn.ConvTranspose3d(in_channels=3, out_channels=4, kernel_size=2, padding=1)
materialized_output = convtrans3d(data)
meta_data = data.to('meta')
_assert_output_shape(data=meta_data,
module=convtrans3d,
patch_fn=patched_module.torch_nn_convtranspose3d,
expect_exception=False,
output_shape=materialized_output.shape)
def test_pool1d():
combinations = [[torch.nn.MaxPool1d, patched_module.torch_nn_maxpool1d],
[torch.nn.AvgPool1d, patched_module.torch_nn_avgpool1d]]

View File

@ -0,0 +1,63 @@
import torch
from colossalai.fx.tracer.meta_patch import patched_function
from functools import partial
def _run(data, patch_fn):
try:
output = patch_fn(data)
return output
except Exception as e:
return e
def _assert_output_shape(data, patch_fn, expect_exception, output_shape):
output = _run(data, patch_fn)
if expect_exception:
assert isinstance(output, AssertionError)
else:
assert not isinstance(output, Exception)
assert output.is_meta
assert output.shape == output_shape
def test_repeat_interleave():
patch_fn = patched_function.torch_repeat_interleave
# examples from https://pytorch.org/docs/stable/generated/torch.repeat_interleave.html
data = torch.tensor([1, 2, 3])
materialized_output = torch.repeat_interleave(data, repeats=2)
repeat_interleave = partial(patch_fn, repeats=2)
meta_data = data.to('meta')
_assert_output_shape(data=meta_data,
patch_fn=repeat_interleave,
expect_exception=False,
output_shape=materialized_output.shape)
data = torch.tensor([[1, 2], [3, 4]])
materialized_output = torch.repeat_interleave(data, repeats=3, dim=1)
repeat_interleave = partial(patch_fn, repeats=3, dim=1)
meta_data = data.to('meta')
_assert_output_shape(data=meta_data,
patch_fn=repeat_interleave,
expect_exception=False,
output_shape=materialized_output.shape)
data = torch.tensor([[1, 2], [3, 4]])
materialized_output = torch.repeat_interleave(data, repeats=torch.tensor([1, 2]), dim=-1)
repeat_interleave = partial(patch_fn, repeats=torch.tensor([1, 2]), dim=-1)
meta_data = data.to('meta')
_assert_output_shape(data=meta_data,
patch_fn=repeat_interleave,
expect_exception=False,
output_shape=materialized_output.shape)
data = torch.tensor([[1, 2], [3, 4]])
materialized_output = torch.repeat_interleave(data, repeats=torch.tensor([1, 2]), dim=0)
repeat_interleave = partial(patch_fn, repeats=[1, 2], dim=0)
meta_data = data.to('meta')
_assert_output_shape(data=meta_data,
patch_fn=repeat_interleave,
expect_exception=True,
output_shape=materialized_output.shape)

View File

@ -22,7 +22,7 @@ def trace_and_compare(model_cls, tracer, data, meta_args=None):
with torch.no_grad():
fx_out = gm(data)
non_fx_out = model(data)
# compare output
if isinstance(fx_out, tuple):
# some models produce tuple as output

View File

@ -0,0 +1,145 @@
import torch
from torchaudio_utils import trace_and_compare
from torchaudio.models import ConvTasNet, DeepSpeech, Wav2Letter, WaveRNN
from torchaudio.models.wavernn import MelResNet, UpsampleNetwork
import pytest
def test_wave2letter_waveform():
batch_size = 2
num_features = 1
num_classes = 40
input_length = 320
model = Wav2Letter(num_classes=num_classes, num_features=num_features)
def data_gen():
x = torch.rand(batch_size, num_features, input_length)
return dict(x=x)
trace_and_compare(model, data_gen, need_meta=False, need_concrete=False)
def test_wave2letter_mfcc():
batch_size = 2
num_features = 13
num_classes = 40
input_length = 2
model = Wav2Letter(num_classes=num_classes, input_type="mfcc", num_features=num_features)
def data_gen():
x = torch.rand(batch_size, num_features, input_length)
return dict(x=x)
trace_and_compare(model, data_gen, need_meta=False, need_concrete=False)
def test_melresnet_waveform():
n_batch = 2
n_time = 200
n_freq = 100
n_output = 128
n_res_block = 10
n_hidden = 128
kernel_size = 5
model = MelResNet(n_res_block, n_freq, n_hidden, n_output, kernel_size)
def data_gen():
x = torch.rand(n_batch, n_freq, n_time)
return dict(specgram=x)
trace_and_compare(model, data_gen, need_meta=False, need_concrete=False)
def test_upsample_network_waveform():
upsample_scales = [5, 5, 8]
n_batch = 2
n_time = 200
n_freq = 100
n_output = 64
n_res_block = 10
n_hidden = 32
kernel_size = 5
total_scale = 1
for upsample_scale in upsample_scales:
total_scale *= upsample_scale
model = UpsampleNetwork(upsample_scales, n_res_block, n_freq, n_hidden, n_output, kernel_size)
def data_gen():
x = torch.rand(n_batch, n_freq, n_time)
return dict(specgram=x)
trace_and_compare(model, data_gen, need_meta=False, need_concrete=False)
def test_wavernn_waveform():
upsample_scales = [2, 2, 5]
n_rnn = 16
n_fc = 16
n_classes = 10
hop_length = 20
n_batch = 2
n_time = 20
n_freq = 10
n_output = 16
n_res_block = 3
n_hidden = 16
kernel_size = 5
model = WaveRNN(upsample_scales, n_classes, hop_length, n_res_block, n_rnn, n_fc, kernel_size, n_freq, n_hidden,
n_output)
def data_gen():
x = torch.rand(n_batch, 1, hop_length * (n_time - kernel_size + 1))
mels = torch.rand(n_batch, 1, n_freq, n_time)
return dict(waveform=x, specgram=mels)
trace_and_compare(model, data_gen, need_meta=True, need_concrete=False)
def test_convtasnet_config():
batch_size = 32
num_frames = 800
model = ConvTasNet()
def data_gen():
tensor = torch.rand(batch_size, 1, num_frames)
return dict(input=tensor)
trace_and_compare(model, data_gen, need_meta=True, need_concrete=False)
def test_deepspeech():
n_batch = 2
n_feature = 1
n_channel = 1
n_class = 40
n_time = 32
model = DeepSpeech(n_feature=n_feature, n_class=n_class)
def data_gen():
x = torch.rand(n_batch, n_channel, n_time, n_feature)
return dict(x=x)
trace_and_compare(model, data_gen, need_meta=False, need_concrete=False)
if __name__ == '__main__':
TEST_LIST = [
test_wave2letter_waveform,
test_wave2letter_mfcc,
test_melresnet_waveform,
test_upsample_network_waveform,
test_wavernn_waveform,
test_convtasnet_config,
test_deepspeech,
]
for test_fn in TEST_LIST:
test_fn()

View File

@ -0,0 +1,57 @@
import torch
from torchaudio.models import Tacotron2
from torchaudio_utils import trace_and_compare
import pytest
def _get_tacotron2_model(n_mels, decoder_max_step=2000, gate_threshold=0.5):
return Tacotron2(
mask_padding=False,
n_mels=n_mels,
n_symbol=20,
n_frames_per_step=1,
symbol_embedding_dim=32,
encoder_embedding_dim=32,
encoder_n_convolution=3,
encoder_kernel_size=5,
decoder_rnn_dim=32,
decoder_max_step=decoder_max_step,
decoder_dropout=0.1,
decoder_early_stopping=True,
attention_rnn_dim=32,
attention_hidden_dim=32,
attention_location_n_filter=32,
attention_location_kernel_size=31,
attention_dropout=0.1,
prenet_dim=32,
postnet_n_convolution=5,
postnet_kernel_size=5,
postnet_embedding_dim=512,
gate_threshold=gate_threshold,
)
@pytest.mark.skip
def test_tacotron_model():
n_mels = 80
n_batch = 3
max_mel_specgram_length = 300
max_text_length = 100
model = _get_tacotron2_model(n_mels)
def data_gen():
text = torch.randint(0, 148, (n_batch, max_text_length))
text_lengths = max_text_length * torch.ones((n_batch,))
mel_specgram = torch.rand(n_batch, n_mels, max_mel_specgram_length)
mel_specgram_lengths = max_mel_specgram_length * torch.ones((n_batch,))
return dict(tokens=text,
token_lengths=text_lengths,
mel_specgram=mel_specgram,
mel_specgram_lengths=mel_specgram_lengths)
trace_and_compare(model, data_gen, need_meta=True, need_concrete=False)
if __name__ == "__main__":
test_tacotron_model()

View File

@ -0,0 +1,61 @@
import torch
from torchaudio_utils import trace_and_compare
from torchaudio.models import Emformer, Conformer
import pytest
@pytest.mark.skip
def test_conformer():
input_dim = 80
batch_size = 10
num_frames = 400
num_heads = 4
ffn_dim = 128
num_layers = 4
depthwise_conv_kernel_size = 31
model = Conformer(
input_dim=input_dim,
num_heads=num_heads,
ffn_dim=ffn_dim,
num_layers=num_layers,
depthwise_conv_kernel_size=depthwise_conv_kernel_size,
)
def data_gen():
lengths = torch.randint(1, num_frames, (batch_size,))
input = torch.rand(batch_size, int(lengths.max()), input_dim)
return dict(input=input, lengths=lengths)
trace_and_compare(model, data_gen, need_meta=False, need_concrete=True)
@pytest.mark.skip
def test_emformer():
input_dim = 128
batch_size = 10
num_heads = 8
ffn_dim = 256
num_layers = 3
segment_length = 4
num_frames = 400
right_context_length = 1
model = Emformer(input_dim, num_heads, ffn_dim, num_layers, segment_length, right_context_length)
def data_gen():
lengths = torch.randint(1, num_frames, (batch_size,))
input = torch.rand(batch_size, num_frames, input_dim)
return dict(input=input, lengths=lengths)
trace_and_compare(model, data_gen, need_meta=True, need_concrete=False)
@pytest.mark.skip
def test_torchaudio_transformers():
test_conformer()
test_emformer()
if __name__ == "__main__":
test_torchaudio_transformers()

View File

@ -0,0 +1,50 @@
import torch
from torchaudio.models.wav2vec2 import (
hubert_base,
hubert_large,
hubert_xlarge,
wav2vec2_base,
wav2vec2_large,
wav2vec2_large_lv60k,
)
from torchaudio_utils import trace_and_compare
import pytest
MODEL_LIST = [
hubert_base,
hubert_large,
hubert_xlarge,
wav2vec2_base,
wav2vec2_large,
wav2vec2_large_lv60k,
]
def _smoke_test(model, device):
model = model.to(device=device)
batch_size, num_frames = 3, 1024
def data_gen():
waveforms = torch.randn(batch_size, num_frames, device=device)
lengths = torch.randint(
low=0,
high=num_frames,
size=[
batch_size,
],
device=device,
)
return dict(waveforms=waveforms, lengths=lengths)
trace_and_compare(model, data_gen, need_meta=True, need_concrete=False)
@pytest.mark.skip
def test_wav2vec():
for model_fn in MODEL_LIST:
_smoke_test(model_fn(), 'cpu')
if __name__ == "__main__":
test_wav2vec()

View File

@ -0,0 +1,28 @@
from colossalai.fx import ColoTracer
import torch
from torch.fx import GraphModule, Tracer
def trace_and_compare(model, data_gen, need_meta=False, need_concrete=False):
data = data_gen()
concrete_args = data if need_concrete else {}
meta_args = {k: v.to('meta') for k, v in data.items()} if need_meta else {}
tracer = ColoTracer()
graph = tracer.trace(root=model, concrete_args=concrete_args, meta_args=meta_args)
gm = GraphModule(model, graph, model.__class__.__name__)
gm.recompile()
model.eval()
gm.eval()
with torch.no_grad():
non_fx_out = model(**data)
fx_out = gm(**data)
if isinstance(fx_out, tuple):
for non_fx, fx in zip(non_fx_out, fx_out):
assert torch.allclose(non_fx,
fx), f'{model.__class__.__name__} has inconsistent outputs, {fx_out} vs {non_fx_out}'
else:
assert torch.allclose(
fx_out, non_fx_out), f'{model.__class__.__name__} has inconsistent outputs, {fx_out} vs {non_fx_out}'