mirror of https://github.com/hpcaitech/ColossalAI
fix some typo (#5307)
parent
ec912b1ba9
commit
bce9499ed3
|
@ -69,7 +69,7 @@ class MoEManager(metaclass=SingletonMeta):
|
|||
fixed_dp_size (int, optional): Fixed dp size in fixed mode. Defaults to 0.
|
||||
fixed_ep_size (int, optional): Fixed ep size in fixed mode. Defaults to 0.
|
||||
fixed_pp_size (int, optional): Fixed pp size in fixed mode. Defaults to 0.
|
||||
use_ep_inside (bool, optional): Use ep inside dp if True, dp inside ep if Fasle. Defaults to True.
|
||||
use_ep_inside (bool, optional): Use ep inside dp if True, dp inside ep if False. Defaults to True.
|
||||
"""
|
||||
assert not self.is_initialized, "MoE distributed context shouldn't be set up again"
|
||||
assert torch.cuda.is_available(), "MoE requires to enable CUDA first"
|
||||
|
|
|
@ -451,7 +451,7 @@ class CommSpec:
|
|||
elif self.comm_pattern == CollectiveCommPattern.MIXGATHER_FWD_SPLIT_BWD:
|
||||
res_list.append(f"comm_pattern:MIXGATHER_FWD_SPLIT_BWD, ")
|
||||
res_list.append(f"gather_dim:{self.gather_dim}, ")
|
||||
res_list.append(f"logical_process_asex:{self.logical_process_axes})")
|
||||
res_list.append(f"logical_process_axes:{self.logical_process_axes})")
|
||||
|
||||
return "".join(res_list)
|
||||
|
||||
|
|
|
@ -96,9 +96,9 @@ def _apply_layout(tensor, layout):
|
|||
"""
|
||||
Apply the layout to the local tensor during initializing process.
|
||||
"""
|
||||
# layout converter requires a source and target laytout
|
||||
# layout converter requires a source and target layout
|
||||
# we construct the source layer for an unsharded tensor
|
||||
# and use self.dist_layer as the targer layout for the sharded tensor
|
||||
# and use self.dist_layer as the target layout for the sharded tensor
|
||||
source_spec = _construct_default_sharding_spec(tensor)
|
||||
source_layout = Layout(device_mesh=layout.device_mesh, sharding_spec=source_spec, global_shape=tensor.shape)
|
||||
sharded_tensor = layout_converter.apply(tensor=tensor, source_layout=source_layout, target_layout=layout)
|
||||
|
|
|
@ -40,7 +40,7 @@ def get_moe_info(ep_size: int, dp_size: int, pp_size: int, ep_inside: bool) -> M
|
|||
ep_size (int): The expert parallel size.
|
||||
dp_size (int): The data parallel size.
|
||||
pp_size (int): The pipeline parallel size.
|
||||
ep_inside (bool, optional): Use ep inside dp if True, dp inside ep if Fasle.
|
||||
ep_inside (bool, optional): Use ep inside dp if True, dp inside ep if False.
|
||||
|
||||
Returns:
|
||||
dict: The moe info of the given tensor.
|
||||
|
|
|
@ -12,7 +12,7 @@ class MoeParallelInfo:
|
|||
ep_size (int): expert parallel size
|
||||
dp_size (int): data parallel (zero) size
|
||||
pp_size (int, optional): pipeline parallel size. Defaults to 1.
|
||||
ep_inside (bool, optional): Use ep inside dp if True, dp inside ep if Fasle. Defaults to True.
|
||||
ep_inside (bool, optional): Use ep inside dp if True, dp inside ep if False. Defaults to True.
|
||||
"""
|
||||
self.pp_size, self.dp_size, self.ep_size = pp_size, dp_size, ep_size
|
||||
if ep_inside:
|
||||
|
|
|
@ -123,7 +123,7 @@ class MultiTimer:
|
|||
return None
|
||||
|
||||
def get_timer(self, name):
|
||||
"""Get timer by its name (from multitimer)
|
||||
"""Get timer by its name (from multimer)
|
||||
|
||||
Args:
|
||||
name (str): Timer's key.
|
||||
|
|
|
@ -413,7 +413,7 @@ class GeminiOptimizer(OptimizerWrapper):
|
|||
only_rank_0(bool): if True, states will be collected only on master rank, otherwise collected on every rank.
|
||||
|
||||
Returns:
|
||||
collected_states(dict): the gathered optimzier state of parameter with given id
|
||||
collected_states(dict): the gathered optimizer state of parameter with given id
|
||||
if this method is called by master rank, otherwise an empty dict.
|
||||
|
||||
This method can work only when called by all processes simultaneously.
|
||||
|
@ -461,7 +461,7 @@ class GeminiOptimizer(OptimizerWrapper):
|
|||
global_shape = self.optimizer_params_info["id2shape"][param_id]
|
||||
|
||||
# If the chunk is kept gathered,
|
||||
# the parameteres are treated the same as that of those in strict DDP during training.
|
||||
# the parameters are treated the same as that of those in strict DDP during training.
|
||||
# So states can be directly fetched from current device.
|
||||
if chunk.keep_gathered:
|
||||
assert param_id in self.id_to_fake_params
|
||||
|
@ -644,7 +644,7 @@ class GeminiOptimizer(OptimizerWrapper):
|
|||
"""
|
||||
Args:
|
||||
only_rank_0 (bool): a boolean value indicating whether the state_dict is collected
|
||||
only on rank 0, dafault to True.
|
||||
only on rank 0, default to True.
|
||||
|
||||
Returns:
|
||||
The complete state of the optimizer as a :class:`dict`.
|
||||
|
@ -783,7 +783,7 @@ class GeminiOptimizer(OptimizerWrapper):
|
|||
prefix (str, optional): the prefix for states. Default to ''.
|
||||
max_shard_size (int, optional): max size of state dict shard (in MB). Defaults to 1024.
|
||||
only_rank_0 (bool, optional): a boolean value indicating whether the state_dict is collected
|
||||
only on rank 0, dafault to True.
|
||||
only on rank 0, default to True.
|
||||
|
||||
Yields:
|
||||
Iterator[OrderedDict]: A generator of state dict shard of optimizer states.
|
||||
|
|
|
@ -15,7 +15,7 @@ class BucketStore(BaseStore):
|
|||
# init
|
||||
self.current_group_id = 0
|
||||
self._num_elements_in_bucket = 0
|
||||
# mapping gardient slices and parameter
|
||||
# mapping gradient slices and parameter
|
||||
self.grad_to_param_mapping = dict()
|
||||
|
||||
self._grad_in_bucket = dict()
|
||||
|
@ -59,7 +59,7 @@ class BucketStore(BaseStore):
|
|||
self.offset_list[-1] += 1
|
||||
|
||||
def build_grad_in_bucket(self):
|
||||
"""Orgnize parameters' gradient(padding and split), follows the paramters' splitting method
|
||||
"""Organize parameters' gradient(padding and split), follows the parameters' splitting method
|
||||
|
||||
Data structure of self._grad_in_bucket:
|
||||
{
|
||||
|
@ -91,7 +91,7 @@ class BucketStore(BaseStore):
|
|||
return self._grad_in_bucket
|
||||
|
||||
def get_flatten_grad(self) -> Tensor:
|
||||
"""Return the flattened gradients slices in the bucket, the data orginization of the flattened tensor:
|
||||
"""Return the flattened gradients slices in the bucket, the data organization of the flattened tensor:
|
||||
[grad0_rank0, grad1_rank0, ..., grad_0_rank1, grad1_rank1, ....]
|
||||
|
||||
Returns:
|
||||
|
|
|
@ -9,7 +9,7 @@ class GradientStore(BaseStore):
|
|||
def __init__(self, *args, partition_grad: bool = False):
|
||||
super().__init__(*args)
|
||||
"""
|
||||
self._grads_of_params mapping the paramater and its gradient slices
|
||||
self._grads_of_params mapping the parameter and its gradient slices
|
||||
data structure:
|
||||
{
|
||||
group_id:{
|
||||
|
|
|
@ -171,7 +171,7 @@ class LowLevelZeroOptimizer(OptimizerWrapper):
|
|||
# managed by this data parallel rank
|
||||
param_group["params"] = master_param_current_rank
|
||||
|
||||
# if there are moe params, store in addtional group in optim
|
||||
# if there are moe params, store in additional group in optim
|
||||
if len(moe_params) > 0:
|
||||
param_group = dict()
|
||||
for key, value in self.optim.param_groups[0].items():
|
||||
|
@ -180,8 +180,8 @@ class LowLevelZeroOptimizer(OptimizerWrapper):
|
|||
param_group["params"] = moe_params
|
||||
self.optim.param_groups.append(param_group)
|
||||
|
||||
# intialize communication stream for
|
||||
# communication-compuation overlapping
|
||||
# initialize communication stream for
|
||||
# communication-computation overlapping
|
||||
if self._overlap_communication:
|
||||
self._comm_stream = device_utils.Stream()
|
||||
|
||||
|
|
|
@ -32,7 +32,7 @@ Plugin is an important component that manages parallel configuration (eg: The ge
|
|||
|
||||
More details about usages of each plugin can be found in chapter [Booster Plugins](./booster_plugins.md).
|
||||
|
||||
Some plugins support lazy initialization, which can be used to save memory when initializating large models. For more details, please see [Lazy Initialization](../features/lazy_init.md).
|
||||
Some plugins support lazy initialization, which can be used to save memory when initializing large models. For more details, please see [Lazy Initialization](../features/lazy_init.md).
|
||||
|
||||
### API of booster
|
||||
|
||||
|
|
|
@ -49,7 +49,7 @@ You should expect to the log like this. This log shows the edge cost on the comp
|
|||
|
||||
### Auto-Checkpoint Tutorial
|
||||
|
||||
We prepare two bechmarks for you to test the performance of auto checkpoint
|
||||
We prepare two benchmarks for you to test the performance of auto checkpoint
|
||||
|
||||
The first test `auto_ckpt_solver_test.py` will show you the ability of solver to search checkpoint strategy that could fit in the given budget (test on GPT2 Medium and ResNet 50). It will output the benchmark summary and data visualization of peak memory vs. budget memory and relative step time vs. peak memory.
|
||||
|
||||
|
|
Loading…
Reference in New Issue