mirror of https://github.com/hpcaitech/ColossalAI
optimize engine and trainer test (#448)
parent
237d08e7ee
commit
bb2790cf0b
|
@ -37,21 +37,12 @@ def run_trainer(rank, world_size, port):
|
||||||
|
|
||||||
# build dataloaders
|
# build dataloaders
|
||||||
transform_train = transforms.Compose([
|
transform_train = transforms.Compose([
|
||||||
transforms.RandomCrop(32, padding=4),
|
|
||||||
transforms.AutoAugment(policy=transforms.AutoAugmentPolicy.CIFAR10),
|
|
||||||
transforms.ToTensor(),
|
|
||||||
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
|
|
||||||
])
|
|
||||||
transform_test = transforms.Compose([
|
|
||||||
transforms.Resize(32),
|
|
||||||
transforms.ToTensor(),
|
transforms.ToTensor(),
|
||||||
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
|
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
|
||||||
])
|
])
|
||||||
|
|
||||||
train_dataset = CIFAR10(root=Path(os.environ['DATA']), train=True, download=True, transform=transform_train)
|
train_dataset = CIFAR10(root=Path(os.environ['DATA']), train=True, download=True, transform=transform_train)
|
||||||
test_dataset = CIFAR10(root=Path(os.environ['DATA']), train=False, transform=transform_test)
|
|
||||||
train_dataloader = get_dataloader(dataset=train_dataset, shuffle=True, batch_size=BATCH_SIZE, pin_memory=True)
|
train_dataloader = get_dataloader(dataset=train_dataset, shuffle=True, batch_size=BATCH_SIZE, pin_memory=True)
|
||||||
test_dataloader = get_dataloader(dataset=test_dataset, batch_size=BATCH_SIZE, pin_memory=True)
|
|
||||||
|
|
||||||
# build criterion
|
# build criterion
|
||||||
criterion = CrossEntropyLoss()
|
criterion = CrossEntropyLoss()
|
||||||
|
@ -65,33 +56,29 @@ def run_trainer(rank, world_size, port):
|
||||||
warmup_steps = steps_per_epoch * WARMUP_EPOCHS
|
warmup_steps = steps_per_epoch * WARMUP_EPOCHS
|
||||||
lr_scheduler = LinearWarmupLR(optimizer, total_steps=total_steps, warmup_steps=warmup_steps)
|
lr_scheduler = LinearWarmupLR(optimizer, total_steps=total_steps, warmup_steps=warmup_steps)
|
||||||
|
|
||||||
engine, train_dataloader, test_dataloader, lr_scheduler = colossalai.initialize(pipe_model, optimizer, criterion,
|
engine, train_dataloader, _, lr_scheduler = colossalai.initialize(pipe_model,
|
||||||
train_dataloader, test_dataloader,
|
optimizer,
|
||||||
lr_scheduler)
|
criterion,
|
||||||
|
train_dataloader,
|
||||||
|
lr_scheduler=lr_scheduler)
|
||||||
|
|
||||||
timer = MultiTimer()
|
schedule = PipelineSchedule(num_microbatches=2)
|
||||||
|
logger = get_dist_logger()
|
||||||
|
|
||||||
schedule = PipelineSchedule(num_microbatches=4)
|
trainer = Trainer(engine=engine, logger=logger, schedule=schedule)
|
||||||
|
|
||||||
trainer = Trainer(engine=engine, timer=timer, logger=logger, schedule=schedule)
|
|
||||||
|
|
||||||
hook_list = [
|
hook_list = [
|
||||||
hooks.LossHook(),
|
|
||||||
hooks.LRSchedulerHook(lr_scheduler=lr_scheduler, by_epoch=False),
|
hooks.LRSchedulerHook(lr_scheduler=lr_scheduler, by_epoch=False),
|
||||||
hooks.LogMetricByEpochHook(logger),
|
|
||||||
]
|
]
|
||||||
|
|
||||||
trainer.fit(train_dataloader=train_dataloader,
|
trainer.fit(train_dataloader=train_dataloader,
|
||||||
epochs=NUM_EPOCHS,
|
epochs=NUM_EPOCHS,
|
||||||
max_steps=5,
|
max_steps=2,
|
||||||
test_dataloader=test_dataloader,
|
|
||||||
test_interval=1,
|
|
||||||
hooks=hook_list,
|
hooks=hook_list,
|
||||||
display_progress=True)
|
display_progress=True)
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.dist
|
@pytest.mark.dist
|
||||||
# @pytest.mark.skip("This test requires more than 8 GPUs, you should invoke this test script using test.sh provided manually")
|
|
||||||
def test_hybrid_parallel():
|
def test_hybrid_parallel():
|
||||||
world_size = 8
|
world_size = 8
|
||||||
run_func = partial(run_trainer, world_size=world_size, port=free_port())
|
run_func = partial(run_trainer, world_size=world_size, port=free_port())
|
||||||
|
|
|
@ -8,78 +8,52 @@ from colossalai.context import Config
|
||||||
from colossalai.core import global_context as gpc
|
from colossalai.core import global_context as gpc
|
||||||
from colossalai.utils import free_port
|
from colossalai.utils import free_port
|
||||||
from tests.components_to_test.registry import non_distributed_component_funcs
|
from tests.components_to_test.registry import non_distributed_component_funcs
|
||||||
|
from colossalai.testing import parameterize
|
||||||
|
|
||||||
CONFIG = dict(parallel=dict(pipeline=dict(size=1), tensor=dict(size=1, mode=None)),
|
CONFIG = dict(parallel=dict(pipeline=dict(size=1), tensor=dict(size=1, mode=None)),
|
||||||
fp16=dict(mode=None),
|
fp16=dict(mode=None),
|
||||||
clip_grad_norm=1.0)
|
clip_grad_norm=1.0)
|
||||||
|
|
||||||
|
|
||||||
def run_train():
|
@parameterize('model_name', ['repeated_computed_layers', 'resnet18', 'repeated_computed_layers'])
|
||||||
test_models = ['repeated_computed_layers', 'resnet18', 'repeated_computed_layers']
|
@parameterize('amp_mode', [AMP_TYPE.APEX, AMP_TYPE.TORCH, AMP_TYPE.NAIVE, None])
|
||||||
|
def run_train(model_name, amp_mode):
|
||||||
# FIXME: test bert
|
# FIXME: test bert
|
||||||
for model_name in test_models:
|
get_components_func = non_distributed_component_funcs.get_callable(model_name)
|
||||||
get_components_func = non_distributed_component_funcs.get_callable(model_name)
|
gpc.config.fp16['mode'] = amp_mode
|
||||||
model_builder, train_dataloader, _, optimizer_class, criterion = get_components_func()
|
model_builder, train_dataloader, _, optimizer_class, criterion = get_components_func()
|
||||||
|
|
||||||
model = model_builder(checkpoint=False)
|
model = model_builder(checkpoint=False)
|
||||||
engine, train_dataloader, *args = colossalai.initialize(model=model,
|
engine, train_dataloader, *args = colossalai.initialize(model=model,
|
||||||
optimizer=optimizer_class(model.parameters(), lr=1e-3),
|
optimizer=optimizer_class(model.parameters(), lr=1e-3),
|
||||||
criterion=criterion,
|
criterion=criterion,
|
||||||
train_dataloader=train_dataloader)
|
train_dataloader=train_dataloader)
|
||||||
|
|
||||||
try:
|
try:
|
||||||
engine.train()
|
engine.train()
|
||||||
for data, label in train_dataloader:
|
for data, label in train_dataloader:
|
||||||
engine.zero_grad()
|
engine.zero_grad()
|
||||||
data = data.cuda()
|
data = data.cuda()
|
||||||
label = label.cuda()
|
label = label.cuda()
|
||||||
if criterion:
|
if criterion:
|
||||||
output = engine(data)
|
output = engine(data)
|
||||||
loss = engine.criterion(output, label)
|
loss = engine.criterion(output, label)
|
||||||
else:
|
else:
|
||||||
loss = engine(data, label)
|
loss = engine(data, label)
|
||||||
engine.backward(loss)
|
engine.backward(loss)
|
||||||
engine.step()
|
engine.step()
|
||||||
break
|
break
|
||||||
except IndexError:
|
except IndexError:
|
||||||
# if using apex amp, NetWithRepeatedlyComputedLayers will raise an index out of range issue
|
# if using apex amp, NetWithRepeatedlyComputedLayers will raise an index out of range issue
|
||||||
# the following check fails in apex
|
# the following check fails in apex
|
||||||
# if cached_x.grad_fn.next_functions[1][0].variable is not x:
|
# if cached_x.grad_fn.next_functions[1][0].variable is not x:
|
||||||
continue
|
pass
|
||||||
|
|
||||||
|
|
||||||
def run_with_no_amp():
|
|
||||||
run_train()
|
|
||||||
|
|
||||||
|
|
||||||
def run_with_torch_amp():
|
|
||||||
# hack config
|
|
||||||
CONFIG['fp16']['mode'] = AMP_TYPE.TORCH
|
|
||||||
gpc._config = Config(CONFIG)
|
|
||||||
run_train()
|
|
||||||
|
|
||||||
|
|
||||||
def run_with_apex_amp():
|
|
||||||
# hack config
|
|
||||||
CONFIG['fp16']['mode'] = AMP_TYPE.APEX
|
|
||||||
gpc._config = Config(CONFIG)
|
|
||||||
run_train()
|
|
||||||
|
|
||||||
|
|
||||||
def run_with_naive_amp():
|
|
||||||
# hack config
|
|
||||||
CONFIG['fp16']['mode'] = AMP_TYPE.NAIVE
|
|
||||||
gpc._config = Config(CONFIG)
|
|
||||||
run_train()
|
|
||||||
|
|
||||||
|
|
||||||
def run_engine(rank, world_size, port):
|
def run_engine(rank, world_size, port):
|
||||||
# init dist env
|
# init dist env
|
||||||
colossalai.launch(config=dict(), rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||||
run_with_no_amp()
|
run_train()
|
||||||
run_with_torch_amp()
|
|
||||||
run_with_apex_amp()
|
|
||||||
run_with_naive_amp()
|
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.dist
|
@pytest.mark.dist
|
||||||
|
|
|
@ -7,10 +7,8 @@ import pytest
|
||||||
import torch
|
import torch
|
||||||
import torch.distributed as dist
|
import torch.distributed as dist
|
||||||
import torch.multiprocessing as mp
|
import torch.multiprocessing as mp
|
||||||
from colossalai.communication import (recv_backward, recv_forward,
|
from colossalai.communication import (recv_backward, recv_forward, recv_tensor_meta, send_backward,
|
||||||
recv_tensor_meta, send_backward,
|
send_backward_recv_forward, send_forward, send_forward_recv_backward,
|
||||||
send_backward_recv_forward, send_forward,
|
|
||||||
send_forward_recv_backward,
|
|
||||||
send_tensor_meta)
|
send_tensor_meta)
|
||||||
from colossalai.context.parallel_mode import ParallelMode
|
from colossalai.context.parallel_mode import ParallelMode
|
||||||
from colossalai.core import global_context as gpc
|
from colossalai.core import global_context as gpc
|
||||||
|
@ -18,17 +16,11 @@ from colossalai.initialize import launch
|
||||||
from colossalai.logging import get_dist_logger
|
from colossalai.logging import get_dist_logger
|
||||||
from colossalai.utils import free_port, get_current_device
|
from colossalai.utils import free_port, get_current_device
|
||||||
|
|
||||||
BATCH_SIZE = 16
|
BATCH_SIZE = 4
|
||||||
SEQ_LENGTH = 64
|
SEQ_LENGTH = 2
|
||||||
HIDDEN_SIZE = 128
|
HIDDEN_SIZE = 16
|
||||||
|
|
||||||
CONFIG = dict(
|
CONFIG = dict(parallel=dict(pipeline=dict(size=4), tensor=dict(size=1, mode=None)), seed=1024)
|
||||||
parallel=dict(
|
|
||||||
pipeline=dict(size=4),
|
|
||||||
tensor=dict(size=1, mode=None)
|
|
||||||
),
|
|
||||||
seed=1024
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
def check_equal(A, B):
|
def check_equal(A, B):
|
||||||
|
@ -41,8 +33,7 @@ def check_forward(output_tensor, rank, logger):
|
||||||
tensor = output_tensor.clone()
|
tensor = output_tensor.clone()
|
||||||
else:
|
else:
|
||||||
tensor = recv_forward(output_tensor.shape)
|
tensor = recv_forward(output_tensor.shape)
|
||||||
logger.info('Rank {} received forward. Correct tensor: {}'.format(
|
logger.info('Rank {} received forward. Correct tensor: {}'.format(rank, check_equal(tensor, output_tensor)))
|
||||||
rank, check_equal(tensor, output_tensor)))
|
|
||||||
if not gpc.is_last_rank(ParallelMode.PIPELINE):
|
if not gpc.is_last_rank(ParallelMode.PIPELINE):
|
||||||
send_forward(tensor)
|
send_forward(tensor)
|
||||||
logger.info('Rank {} sent forward.'.format(rank))
|
logger.info('Rank {} sent forward.'.format(rank))
|
||||||
|
@ -54,8 +45,7 @@ def check_backward(output_grad, rank, logger):
|
||||||
grad = output_grad.clone()
|
grad = output_grad.clone()
|
||||||
else:
|
else:
|
||||||
grad = recv_backward(output_grad.shape)
|
grad = recv_backward(output_grad.shape)
|
||||||
logger.info('Rank {} received backward. Correct grad: {}'.format(
|
logger.info('Rank {} received backward. Correct grad: {}'.format(rank, check_equal(grad, output_grad)))
|
||||||
rank, check_equal(grad, output_grad)))
|
|
||||||
if not gpc.is_first_rank(ParallelMode.PIPELINE):
|
if not gpc.is_first_rank(ParallelMode.PIPELINE):
|
||||||
send_backward(grad)
|
send_backward(grad)
|
||||||
logger.info('Rank {} sent backward.'.format(rank))
|
logger.info('Rank {} sent backward.'.format(rank))
|
||||||
|
@ -65,17 +55,15 @@ def check_forward_backward(output_tensor, output_grad, rank, logger):
|
||||||
dist.barrier()
|
dist.barrier()
|
||||||
if not gpc.is_first_rank(ParallelMode.PIPELINE):
|
if not gpc.is_first_rank(ParallelMode.PIPELINE):
|
||||||
tensor = send_backward_recv_forward(output_grad, output_tensor.shape)
|
tensor = send_backward_recv_forward(output_grad, output_tensor.shape)
|
||||||
logger.info(
|
logger.info('Rank {} sent backward received forward. Correct tensor: {}'.format(
|
||||||
'Rank {} sent backward received forward. Correct tensor: {}'.
|
rank, check_equal(tensor, output_tensor)))
|
||||||
format(rank, check_equal(tensor, output_tensor)))
|
|
||||||
if not gpc.is_last_rank(ParallelMode.PIPELINE):
|
if not gpc.is_last_rank(ParallelMode.PIPELINE):
|
||||||
grad = send_forward_recv_backward(output_tensor, output_grad.shape)
|
grad = send_forward_recv_backward(output_tensor, output_grad.shape)
|
||||||
logger.info(
|
logger.info('Rank {} sent forward received backward. Correct grad: {}'.format(
|
||||||
'Rank {} sent forward received backward. Correct grad: {}'.format(
|
rank, check_equal(grad, output_grad)))
|
||||||
rank, check_equal(grad, output_grad)))
|
|
||||||
|
|
||||||
|
|
||||||
def check_comm(size, rank, prev_rank, next_rank, logger):
|
def check_comm(size, rank, prev_rank, next_rank, logger):
|
||||||
dtype = torch.float32
|
dtype = torch.float32
|
||||||
device = get_current_device()
|
device = get_current_device()
|
||||||
tensor_shape = (BATCH_SIZE, SEQ_LENGTH, HIDDEN_SIZE)
|
tensor_shape = (BATCH_SIZE, SEQ_LENGTH, HIDDEN_SIZE)
|
||||||
|
@ -90,21 +78,12 @@ def check_comm(size, rank, prev_rank, next_rank, logger):
|
||||||
|
|
||||||
|
|
||||||
def run_check(rank, world_size, port):
|
def run_check(rank, world_size, port):
|
||||||
launch(
|
launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||||
config=CONFIG,
|
|
||||||
rank=rank,
|
|
||||||
world_size=world_size,
|
|
||||||
host='localhost',
|
|
||||||
port=port,
|
|
||||||
backend='nccl'
|
|
||||||
)
|
|
||||||
logger = get_dist_logger()
|
logger = get_dist_logger()
|
||||||
rank = gpc.get_global_rank()
|
rank = gpc.get_global_rank()
|
||||||
prev_rank = gpc.get_prev_global_rank(ParallelMode.PIPELINE)
|
prev_rank = gpc.get_prev_global_rank(ParallelMode.PIPELINE)
|
||||||
next_rank = gpc.get_next_global_rank(ParallelMode.PIPELINE)
|
next_rank = gpc.get_next_global_rank(ParallelMode.PIPELINE)
|
||||||
logger.info(
|
logger.info('Rank {0}: prev rank {1}, next rank {2}'.format(rank, prev_rank, next_rank))
|
||||||
'Rank {0}: prev rank {1}, next rank {2}'.format(
|
|
||||||
rank, prev_rank, next_rank))
|
|
||||||
logger.info('Distributed environment is initialzied.')
|
logger.info('Distributed environment is initialzied.')
|
||||||
|
|
||||||
check_comm(world_size, rank, prev_rank, next_rank, logger)
|
check_comm(world_size, rank, prev_rank, next_rank, logger)
|
||||||
|
|
|
@ -17,48 +17,34 @@ from colossalai.utils import free_port, get_dataloader, print_rank_0
|
||||||
from torchvision import transforms
|
from torchvision import transforms
|
||||||
from torchvision.datasets import CIFAR10
|
from torchvision.datasets import CIFAR10
|
||||||
|
|
||||||
import model
|
BATCH_SIZE = 4
|
||||||
|
NUM_MICRO = 2
|
||||||
BATCH_SIZE = 32
|
|
||||||
NUM_MICRO = 8
|
|
||||||
|
|
||||||
|
|
||||||
DIR_PATH = osp.dirname(osp.realpath(__file__))
|
DIR_PATH = osp.dirname(osp.realpath(__file__))
|
||||||
CONFIG_PATH = osp.join(DIR_PATH, './resnet_config.py')
|
CONFIG_PATH = osp.join(DIR_PATH, './resnet_config.py')
|
||||||
|
|
||||||
|
|
||||||
def run_schedule(rank, world_size, port):
|
def run_schedule(rank, world_size, port):
|
||||||
launch(config=CONFIG_PATH,
|
launch(config=CONFIG_PATH, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||||
rank=rank,
|
|
||||||
world_size=world_size,
|
|
||||||
host='localhost',
|
|
||||||
port=port,
|
|
||||||
backend='nccl')
|
|
||||||
|
|
||||||
# build model
|
# build model
|
||||||
model = build_pipeline_model_from_cfg(gpc.config.model, 1)
|
model = build_pipeline_model_from_cfg(gpc.config.model, 1)
|
||||||
print_rank_0('model is created')
|
print_rank_0('model is created')
|
||||||
|
|
||||||
train_dataset = CIFAR10(
|
train_dataset = CIFAR10(root=Path(os.environ['DATA']),
|
||||||
root=Path(os.environ['DATA']),
|
download=True,
|
||||||
download=True,
|
transform=transforms.Compose([
|
||||||
transform=transforms.Compose(
|
transforms.ToTensor(),
|
||||||
[
|
transforms.Normalize(mean=[0.4914, 0.4822, 0.4465], std=[0.2023, 0.1994, 0.2010]),
|
||||||
transforms.RandomCrop(size=32, padding=4),
|
]))
|
||||||
transforms.RandomHorizontalFlip(),
|
|
||||||
transforms.ToTensor(),
|
|
||||||
transforms.Normalize(mean=[0.4914, 0.4822, 0.4465], std=[
|
|
||||||
0.2023, 0.1994, 0.2010]),
|
|
||||||
]
|
|
||||||
)
|
|
||||||
)
|
|
||||||
|
|
||||||
train_dataloader = get_dataloader(dataset=train_dataset,
|
train_dataloader = get_dataloader(
|
||||||
shuffle=True,
|
dataset=train_dataset,
|
||||||
add_sampler=True,
|
shuffle=True,
|
||||||
batch_size=BATCH_SIZE,
|
add_sampler=True,
|
||||||
pin_memory=True,
|
batch_size=BATCH_SIZE,
|
||||||
)
|
pin_memory=True,
|
||||||
|
)
|
||||||
|
|
||||||
# build criterion
|
# build criterion
|
||||||
criterion = torch.nn.CrossEntropyLoss()
|
criterion = torch.nn.CrossEntropyLoss()
|
||||||
|
|
|
@ -9,51 +9,51 @@ from colossalai.logging import get_dist_logger
|
||||||
from colossalai.trainer import Trainer
|
from colossalai.trainer import Trainer
|
||||||
from colossalai.utils import MultiTimer, free_port
|
from colossalai.utils import MultiTimer, free_port
|
||||||
from tests.components_to_test.registry import non_distributed_component_funcs
|
from tests.components_to_test.registry import non_distributed_component_funcs
|
||||||
|
from colossalai.testing import parameterize
|
||||||
|
|
||||||
BATCH_SIZE = 16
|
BATCH_SIZE = 4
|
||||||
IMG_SIZE = 32
|
IMG_SIZE = 32
|
||||||
NUM_EPOCHS = 200
|
NUM_EPOCHS = 200
|
||||||
|
|
||||||
CONFIG = dict(
|
CONFIG = dict(fp16=dict(mode=AMP_TYPE.TORCH))
|
||||||
# Config
|
|
||||||
fp16=dict(mode=AMP_TYPE.TORCH))
|
|
||||||
|
|
||||||
|
|
||||||
def run_trainer_no_pipeline(rank, world_size, port):
|
@parameterize('model_name', ['repeated_computed_layers', 'resnet18', 'nested_model'])
|
||||||
|
def run_trainer(model_name):
|
||||||
|
get_components_func = non_distributed_component_funcs.get_callable(model_name)
|
||||||
|
model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func()
|
||||||
|
model = model_builder()
|
||||||
|
optimizer = optimizer_class(model.parameters(), lr=1e-3)
|
||||||
|
engine, train_dataloader, *_ = colossalai.initialize(model=model,
|
||||||
|
optimizer=optimizer,
|
||||||
|
criterion=criterion,
|
||||||
|
train_dataloader=train_dataloader)
|
||||||
|
|
||||||
|
logger = get_dist_logger()
|
||||||
|
logger.info("engine is built", ranks=[0])
|
||||||
|
|
||||||
|
timer = MultiTimer()
|
||||||
|
trainer = Trainer(engine=engine, logger=logger, timer=timer)
|
||||||
|
logger.info("trainer is built", ranks=[0])
|
||||||
|
|
||||||
|
logger.info("start training", ranks=[0])
|
||||||
|
trainer.fit(train_dataloader=train_dataloader,
|
||||||
|
test_dataloader=test_dataloader,
|
||||||
|
epochs=NUM_EPOCHS,
|
||||||
|
max_steps=3,
|
||||||
|
display_progress=True,
|
||||||
|
test_interval=5)
|
||||||
|
torch.cuda.empty_cache()
|
||||||
|
|
||||||
|
|
||||||
|
def run_dist(rank, world_size, port):
|
||||||
colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||||
|
|
||||||
test_models = ['repeated_computed_layers', 'resnet18', 'nested_model']
|
|
||||||
for name in test_models:
|
|
||||||
get_components_func = non_distributed_component_funcs.get_callable(name)
|
|
||||||
model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func()
|
|
||||||
model = model_builder()
|
|
||||||
optimizer = optimizer_class(model.parameters(), lr=1e-3)
|
|
||||||
engine, train_dataloader, *_ = colossalai.initialize(model=model,
|
|
||||||
optimizer=optimizer,
|
|
||||||
criterion=criterion,
|
|
||||||
train_dataloader=train_dataloader)
|
|
||||||
|
|
||||||
logger = get_dist_logger()
|
|
||||||
logger.info("engine is built", ranks=[0])
|
|
||||||
|
|
||||||
timer = MultiTimer()
|
|
||||||
trainer = Trainer(engine=engine, logger=logger, timer=timer)
|
|
||||||
logger.info("trainer is built", ranks=[0])
|
|
||||||
|
|
||||||
logger.info("start training", ranks=[0])
|
|
||||||
trainer.fit(train_dataloader=train_dataloader,
|
|
||||||
test_dataloader=test_dataloader,
|
|
||||||
epochs=NUM_EPOCHS,
|
|
||||||
max_steps=5,
|
|
||||||
display_progress=True,
|
|
||||||
test_interval=5)
|
|
||||||
torch.cuda.empty_cache()
|
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.dist
|
@pytest.mark.dist
|
||||||
def test_trainer_no_pipeline():
|
def test_trainer_no_pipeline():
|
||||||
world_size = 4
|
world_size = 4
|
||||||
run_func = partial(run_trainer_no_pipeline, world_size=world_size, port=free_port())
|
run_func = partial(run_dist, world_size=world_size, port=free_port())
|
||||||
mp.spawn(run_func, nprocs=world_size)
|
mp.spawn(run_func, nprocs=world_size)
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -18,11 +18,11 @@ from torchvision import transforms
|
||||||
from torchvision.datasets import CIFAR10
|
from torchvision.datasets import CIFAR10
|
||||||
from torchvision.models import resnet18
|
from torchvision.models import resnet18
|
||||||
|
|
||||||
BATCH_SIZE = 16
|
BATCH_SIZE = 4
|
||||||
IMG_SIZE = 32
|
IMG_SIZE = 32
|
||||||
NUM_EPOCHS = 200
|
NUM_EPOCHS = 200
|
||||||
|
|
||||||
CONFIG = dict(parallel=dict(pipeline=2, ), )
|
CONFIG = dict(parallel=dict(pipeline=2),)
|
||||||
|
|
||||||
|
|
||||||
def run_trainer_with_pipeline(rank, world_size, port):
|
def run_trainer_with_pipeline(rank, world_size, port):
|
||||||
|
@ -34,9 +34,9 @@ def run_trainer_with_pipeline(rank, world_size, port):
|
||||||
if gpc.get_local_rank(ParallelMode.PIPELINE) == 0:
|
if gpc.get_local_rank(ParallelMode.PIPELINE) == 0:
|
||||||
model = nn.Sequential(model.conv1, model.bn1, model.relu, model.maxpool, model.layer1, model.layer2)
|
model = nn.Sequential(model.conv1, model.bn1, model.relu, model.maxpool, model.layer1, model.layer2)
|
||||||
elif gpc.get_local_rank(ParallelMode.PIPELINE) == 1:
|
elif gpc.get_local_rank(ParallelMode.PIPELINE) == 1:
|
||||||
from functools import partial
|
|
||||||
|
|
||||||
class Flatten(nn.Module):
|
class Flatten(nn.Module):
|
||||||
|
|
||||||
def forward(self, x):
|
def forward(self, x):
|
||||||
return torch.flatten(x, 1)
|
return torch.flatten(x, 1)
|
||||||
|
|
||||||
|
@ -51,23 +51,12 @@ def run_trainer_with_pipeline(rank, world_size, port):
|
||||||
transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))
|
transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))
|
||||||
]))
|
]))
|
||||||
|
|
||||||
test_dataset = CIFAR10(root=Path(os.environ['DATA']),
|
|
||||||
train=False,
|
|
||||||
download=True,
|
|
||||||
transform=transforms.Compose([
|
|
||||||
transforms.Resize(size=(IMG_SIZE, IMG_SIZE)),
|
|
||||||
transforms.ToTensor(),
|
|
||||||
transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))
|
|
||||||
]))
|
|
||||||
|
|
||||||
train_dataloader = get_dataloader(dataset=train_dataset,
|
train_dataloader = get_dataloader(dataset=train_dataset,
|
||||||
shuffle=True,
|
shuffle=True,
|
||||||
batch_size=BATCH_SIZE,
|
batch_size=BATCH_SIZE,
|
||||||
pin_memory=True,
|
pin_memory=True,
|
||||||
drop_last=True)
|
drop_last=True)
|
||||||
|
|
||||||
test_dataloader = get_dataloader(dataset=test_dataset, batch_size=BATCH_SIZE, pin_memory=True, drop_last=True)
|
|
||||||
|
|
||||||
# build optimizer
|
# build optimizer
|
||||||
optimizer = Adam(model.parameters(), lr=0.001)
|
optimizer = Adam(model.parameters(), lr=0.001)
|
||||||
criterion = nn.CrossEntropyLoss()
|
criterion = nn.CrossEntropyLoss()
|
||||||
|
@ -79,7 +68,7 @@ def run_trainer_with_pipeline(rank, world_size, port):
|
||||||
|
|
||||||
logger = get_dist_logger()
|
logger = get_dist_logger()
|
||||||
logger.info("engine is built", ranks=[0])
|
logger.info("engine is built", ranks=[0])
|
||||||
pipe_schedule = PipelineSchedule(num_microbatches=4)
|
pipe_schedule = PipelineSchedule(num_microbatches=2)
|
||||||
timer = MultiTimer()
|
timer = MultiTimer()
|
||||||
trainer = Trainer(engine=engine, schedule=pipe_schedule, logger=logger, timer=timer)
|
trainer = Trainer(engine=engine, schedule=pipe_schedule, logger=logger, timer=timer)
|
||||||
logger.info("trainer is built", ranks=[0])
|
logger.info("trainer is built", ranks=[0])
|
||||||
|
@ -87,9 +76,8 @@ def run_trainer_with_pipeline(rank, world_size, port):
|
||||||
logger.info("start training", ranks=[0])
|
logger.info("start training", ranks=[0])
|
||||||
|
|
||||||
trainer.fit(train_dataloader=train_dataloader,
|
trainer.fit(train_dataloader=train_dataloader,
|
||||||
test_dataloader=test_dataloader,
|
|
||||||
epochs=NUM_EPOCHS,
|
epochs=NUM_EPOCHS,
|
||||||
max_steps=100,
|
max_steps=3,
|
||||||
display_progress=True,
|
display_progress=True,
|
||||||
test_interval=5)
|
test_interval=5)
|
||||||
gpc.destroy()
|
gpc.destroy()
|
||||||
|
|
Loading…
Reference in New Issue